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ABSTRACT 
 
In traditional design for railroad track other than “special work” the geometrical path of a track is 
composed as a sequence of straight lines, circular arcs, and spirals. The present paper defines some 
new geometrical shapes that can be incorporated into alignments for railroad tracks and other vehicle 
guide ways. Where the new shapes are appropriate, alignments that incorporate them will give 
dynamic performance superior to corresponding alignments whose only curved elements are spirals 
and circular arcs. 
 
The simplest of the new shapes are referred to as Bends, Jogs, and Wiggles. While these shapes have 
been a part of every-day language for a long time, they do not appear to have been previously defined 
for or used in geometrical design of tracks and guide ways.  
 
The new shapes are defined within the framework of a recently developed method for design of 
improved railroad track spirals. This paper reviews that method, notes situations in which the new 
shapes can provide improved geometry, presents mathematical formulae by which the shapes can be 
defined, and shows by examples how the shapes can be applied in some typical railroad track 
situations. It is shown that the new shapes can be defined in terms of Gegenbauer polynomials and that 
the known properties of those polynomials contribute both to understanding and application of the 
shapes. 
 
Among ways that the new shapes can be used to improve railroad track there are three that are 
particularly encouraged. First, the Jog shape can be used to define turnout and crossover geometry that 
is dynamically better than the geometry in current use. Second, when existing curves are being 
re-aligned and their spirals are found to be too distorted for immediate restoration of ideal geometry, 
the spirals can be modified by admixture of the new shapes and tamping with limited track throws can 
then achieve smoothed alignments whose dynamic characteristics are relatively optimal. Third, when 
existing curves are being upgraded for higher speeds and transition lengths need to be increased 
without relocation of the curves, transitions based on combinations of spirals and Bends will be 
dynamically better than corresponding compound transitions based on separate arcs and spirals. 
 
The new shapes are applicable not only to railroad tracks but also to other vehicle guide ways 
including, for example, maglev guide ways (magways), roller coaster tracks, and bobsled runs. 
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1. Introduction 
 
Recent publications (references 1, 2, & 3) have presented and demonstrated an improved way of 
thinking about and calculating the geometry of transition spirals for railroad curves. Those publications 
applied the improved method to the most common situation where a spiral makes a simple connection 
between two adjacent segments of track with differing constant values of curvature.  
 
The present paper explores the application of the improved method to more complex transition shapes 
referred to as Bends, Jogs, and Wiggles.  
 
Bends will be of value for track layout at locations where the track needs to change direction by a 
“small” amount. The background is as follows. When an attempt is made to use the normal spiral – 
curve – spiral sequence to accomplish a “small” turn, the spirals themselves accomplish the turn so that 
the sequence changes to spiral – spiral. If the spirals employed are traditional linear spirals, then the 
two spiral sequence has worse than usual dynamic characteristics where the two spirals meet. That 
problem can be ameliorated by use of improved spirals. However, it will be more logical to employ a 
shape designed for this situation. The Bend is designed to be such a shape. It is defined using a 
conceptual framework first developed for improving the design of spirals and will give good dynamic 
performance in “small turn” situations.  
 
Jogs are defined below for situations where the track needs to curve quickly in one direction and then 
quickly in the other direction and where the curvature of the track needs to keep changing throughout 
both curves. Jogs can be used for the design of turnouts and crossovers. A Jog can also be used in 
continuous track where a clearance obstruction on one side is followed fairly closely by an obstruction 
on the other side.  
 
A Wiggle bends to the right, then to the left, and then to the right, or vice-versa. A Wiggle can be used 
where an obstacle on one side requires a local deviation by what would otherwise be a straight path. 
Shapes like Wiggles but with more than three bends can also be defined. 
 
This paper gives formulae for Bends, Jogs, and Wiggles and illustrates track shapes which can be 
obtained from them. The author expects to be able in a future paper coauthored with others to present 
results of simulations like those of reference 3 that will show how predicted vehicle dynamic responses 
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to Bends, Jogs, and shapes defined by Gegenbauer polynomial series compare with predicted vehicle 
responses to corresponding traditional geometries.  
 
The new shapes are applicable to any guide ways on which vehicle speeds are high enough relative to 
guide way curvatures so that centripetal accelerations are important. Other examples of guide ways in 
that category are guide ways for maglev vehicles, roller coasters tracks, and bob-sled runs. 
 
2. Review of Improved Spiral Design Method 
 
The present paper is based on an improved method for designing track geometry shapes in which the 
curvature varies with distance. This Section gives an overview of that method as applied to the design 
of the spiral, which is the simplest such shape. 
 
The main novelty of the improved method is that design is begun not by consideration of competing 
shapes but rather by considering competing forms for the roll of the track as a function of distance. The 
rationale for the improved design method is the proposition that the primary job of a shape element in 
which curvature changes with distance is to cause a vehicle that traverses it to have its roll angle 
change from one steady value to another with the least fluctuation of lateral force applied to the rails 
and with the least fluctuation of lateral and roll accelerations applied to vehicles. This premise focuses 
attention on the vehicle’s rotation about its roll axis as it traverses the spiral and on the character of the 
roll and linear accelerations to which the vehicle is subjected in that process. For reasons explained in 
references 1, 2, 3, 4, and 5 it is normally advantageous to have the longitudinal axis for roll of the track 
raised above the plane of the track to the height of a typical vehicle center of gravity or higher. 
 
Within the improved method, after a roll motion has been chosen, there is a need to be able to compute 
the shape that corresponds to that roll motion. The computation begins with the generally accepted 
premise that the curvature of the path of the roll axis should be such that at design speed the centripetal 
acceleration due to the speed and curvature at any given point balances the component of gravity due 
to the roll (i.e., bank or superelevation angle) of the track at that point. Looking at the components of 
centripetal acceleration and gravity in the rolled plane of the track, this premise is expressed by the 
differential equation  
 

                                       ( ))(_tan)(_ 2 sangler
v
g

saxisb
ds
d






=                                          (1) 

 
In equation (1)   b_axis(s)   denotes the bearing angle of the path of the roll axis. Its derivative with 
respect to distance along the path of the roll axis is by definition the curvature of that path.   g   is the 
acceleration of gravity.   v   is the vehicle speed for which the gravitational and centripetal acceleration 
components are to be in balance, and   r_angle(s)   is the roll angle of the track as a function of 
distance along the path of the roll axis. 
 
Once a roll motion is selected so that track roll is specified as a function of distance, integrating 
equation (1) once yields the bearing angle of the roll axis as a function of distance, and integrating the 
sine and cosine of the roll axis path bearing angle with respect to distance yields Cartesian coordinates 
of points on the path of the roll axis as functions of distance along it. With the roll angle of the track 
and the path of the roll axis both known as functions of distance along the path of the roll axis, the path 
of the track itself can be inferred by simple trigonometry as illustrated in Figure 1.  
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FIGURE 1. Illustration of elevation of roll axis height above plane of track. 
 
A track shape obtained as just outlined based on a roll motion selected as an initial guess will be 
unlikely to connect properly to the adjacent track segments that the shape is intended to connect. The 
method becomes practical when the roll motion is defined by formulae that have adjustable parameters 
and when there is a computational procedure by which the parameter values can be adjusted so that the 
resulting shape does connect properly with the segments of track that are adjacent to it. References 2 
and 3 explain the computational procedure for obtaining improved spirals and give examples of 
plausible roll motions and of the spiral shapes that they generate. The computational procedure is also 
demonstrated in Section 10 below.  
 
The following example of a roll motion for a spiral and of the spiral shape that the roll motion 
generates is taken from reference 3. The shapes of the roll functions are illustrated in Figure 2.  
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FIGURE 2   Order {2,1} roll function; the roll acceleration has a simple zero at the mid point 
and a 2nd order zero at each end.  
 
The roll angle and each of its derivatives is given by a single function that applies throughout the 
length of the spiral. The roll function shown is referred as order {2,1}. The {2,1} designation is used to 
indicate that the roll acceleration has a 2nd order zero at each end and a 1st order zero at the midpoint. 
Denote distance along the path of the roll axis of the spiral by   s, let the spiral extend from a distance   
s = - a   to a distance   s = a   , and let   roll_change   denote the change in the track roll angle over the 
length of the spiral. Then the formula for the roll acceleration (meaning the 2nd derivative of track roll 
angle in radians with respect to distance along the path of the roll axis) is 
 

                         7

22

2

2

16
)()(_105

)(_
a

sassachangeroll
sangler

ds
d −⋅⋅+⋅⋅−=                    (2) 

 
Figure 3 illustrates the spiral that is obtained from the above roll function for connecting tangent track 
to a curve with curvature of 1.0 deg per 100 ft chord and that is “ offset”  from the tangent by 1.8179 ft. 
The track roll axis is at a height 2.44 m (8 ft) above the (unrolled) plane of the track. In this figure the 
improved spiral obtained from the above roll function is compared with a traditional linear spiral 
connecting the same tangent and curve. It may be seen that the improved spiral is a little over twice as 
long as the traditional spiral and that it is smoother in character than the linear spiral in the vicinity of 
the end points of the latter. (The dynamic disturbance caused by the linear spiral would be reduced if 
the length of the linear spiral were increased, but such an increase would cause an increase in the offset 
between the spiral and the curve and would require relocation of the curve.) 
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FIGURE 3   Plots of curvature, alignment, and superelevation for an order {2,1} spiral with 2.44 m (8 ft) 
roll axis height and for a corresponding traditional linear spiral. Both spirals connect tangent track to a 
1.0 deg curve elevated for balance at 90 mph. (The two alignments shown in the central part of the plot 
are too close together to be distinguished at this scale. The displacement from one to the other is indicated 
by the track throw.) The lengths of the traditional and improved spirals illustrated are 152.4 m (500 ft) 
and 313.6 m (1028.8 ft) respectively. 
 
This Section concludes with two observations about the behavior of the track curvature. 
 
The first observation pertains to the behavior of the track curvature at the ends of a track shape. As 
explained in reference 2, rail vehicle motion simulations have shown that a discontinuity in the first 
derivative of track curvature can excite episodes of hunting on the part of some trucks. We would 
therefore like to see how to insure that the first derivative of track curvature will be continuous (which 
is to say, zero) at each end of a track shape. 
 
In light of Figure 1, at corresponding points on the track and on the path of the roll axis, the compass 
bearing of the track is related to the compass bearing of the path of the roll axis by the formula 

                             ( )




 ⋅−= )(_sinarctan)(_)(_ sangler

ds
d

hsaxisbstrackb                        (3) 

 
where   h   represents the roll axis height. The formula for the curvature of the track shape as a function 
of distance along the path of the roll axis can be obtained by differentiating equation (3) with respect to 
distance along the track. Denoting distance along the track by   z   and for the moment abbreviating   
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r_angle(s)   as   r(s), that curvature is 
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Looking further at Figure 1 one can obtain the relation 
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Our purpose here is to establish a condition under which the first derivative of the track curvature will 

be zero at the ends of the shape. It is apparent that   
1−
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   will always be close to unity so that 

we can ignore that factor and look just at how to insure that   )(_2

2

strackb
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d

, the 2nd derivative of the 

track bearing with respect to distance along the path of the roll axis, will be zero at the ends of a shape. 
Taking advantage of equation (1) we can write  
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Differentiating once more we obtain 
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Coupling equation (7) with the simple formula 
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two things can be observed. First, if the roll axis is not raised above the plane of the track so that   
h = 0, then the first derivative of the track curvature with respect to distance will be zero at the ends of 

a shape if the roll velocity,   )(sr
ds
d

 , is zero there. Second if the roll axis is raised above the plane of 

the track so that   h > 0, then to insure that the first derivative of the track curvature with respect to 
distance will be zero at the ends of a shape we will need to restrict considerations to roll functions for 



Bends, Jogs, And Wiggles for Railroad Tracks and Vehicle Guide Ways, Louis T Klauder Jr.       8 
(Preprint, June 24, 2002) 

 

which the angular velocity, angular acceleration, and angular jerk, namely   )(sr
ds
d

,   )(2

2

sr
ds
d

, and   

)(3

3

sr
ds
d

,   are all zero there. 

 
In the roll acceleration of equation (2) the 2nd order zero at each end causes the angular jerk to be zero 
at each end, and this feature makes that roll acceleration suitable for use with the roll axis raised above 
the plane of the track. In Section 7 below we will look later at a situation in which it does not appear 
practical to raise the roll axis above the plane of the track. In that situation we will look at a roll 
acceleration function that has only a 1st order zero at each end.  
 
The second observation regarding the behavoir of the track curvature is for some transition shapes 
there are regions in which it will be greater than the curvature of the path of the roll axis. When that is 
the case it may appear that the balance between centripetal and gravitational force components 
underlying equation (1) is not being realized. We therefore note that the call in equation (1) for balance 
based on the curvature of the path of the roll axis rather than on the curvature of the track is deliberate 
in relation to what is located at the height to which the roll axis is raised when that is a vehicle center 
of gravity or the shoulder of an typical seated passenger.  
 
3. Constructing the roll acceleration for a Bend by overlapping two spirals. 

 
As noted above, if between two segments of tangent track there is need for a “ small”  turn, then in 
traditional practice the turn is accomplished by placing two spirals back to back. A turn formed in this 
way has suboptimal dynamic characteristics, especially if the spirals in question are traditional linear 
spirals. If attention is focused on the roll motion of a vehicle through the turn, then it makes sense to 
look for a single roll acceleration function that covers the whole turn. An alignment that provides a 
transition between two non parallel tangents and that is obtained from a continuously varying roll 
acceleration function that is symmetric about its mid point is referred to herein as a Bend. We will look 
at two different ways of forming roll acceleration functions for Bends.  
 
The first way takes the roll acceleration functions of two spirals like those just illustrated with one 
raising the curvature and the other lowering it, and positions them so that they partially overlap. As the 
constituent roll accelerations are type {2,1} we will denote the combination as 2-{2,1}. 
 
The two roll acceleration functions being combined will have opposite signs and will apply in different 
ranges of distance along the track. We combine them with the help of the auxiliary function 
BOX(a,s,b) defined as 1 if a <= s <= b and 0 otherwise. A single roll acceleration function multiplied 
by BOX(a,s,b) will contribute only in the range of s values in which it applies. We move one roll 
acceleration function backward a distance   q   from the center of the bend and move the other forward 
from the center by the same amount. This will give a Bend with a length of    2(q + a). We write the 
formula for the sum of the roll accelerations as 
 
                              d2r/ds2  =     - BOX(-a  - q, s, a  - q)·j·(s + q) (s + q - a)2 (s + q + a)2   
                                                 + BOX(-a + q, s, a + q)·j·(s  - q) (s  - q - a)2 (s  - q + a)2              (9) 
 
The overall factor of j can be replaced by an expression proportional to the maximum magnitude of the 
roll angle, which occurs in the middle of the Bend. 
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Figures 4, 5, and 6 illustrate the shapes of the roll motions defined by the forgoing equation when   a   
is set to 1.0, the maximum roll is set to 0.1 radians,  and  q  is set successively  to   0.1*a,  0.7*a, and    
0.9*a 
 
 

 
Figure 4.  Roll functions for   2-{2,1} Bend with q = 0.1*a. (In this and following figures that 
show roll acceleration, velocity, and angle together the length of the shape is made artificially 
small so that the three curves have comparable heights.)  
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Figure 5.  Roll functions for   2-{2,1} Bend with q = 0.7*a 
 

 
Figure 6.  Roll functions for   2-{2,1} Bend with q = 0.9*a 
 
Note with respect to equation (1) above that in railroad practice the roll angle will not normally be 
more than about 0.1 radians (6 inches elevation relative to a gage of about 60 inches) and that as a 
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result the tangent of the roll angle will be nearly the same as the roll angle itself. Equation (1) thus 
indicates that the curvature at each point along the Bend will be approximately proportional to the roll 
angle at that point and hence that the total change of track bearing angle accomplished by a Bend will 
be approximately proportional to the integral of roll angle over the length of the Bend. Comparing the 
above three figures it can be observed that the area under the roll angle curve, and thus also the total 
turn angle of the Bend, decreases as   q   decreases. Note also that   q   cannot be lowered to   0, since 
with   q = 0   the constituent roll accelerations would cancel and there would be no curvature at all. 
 
Illustrations of track shapes derived from roll functions are provided for some of the roll functions that 
are defined below. However, the basic idea that applies in all cases can be seen via comparison of the 
plots of roll angle in Figure 2 and superelevation in Figure 3 with the plots of curvature and alignment 
in Figure 3. 
 
The roll function family described above could be used in practice. There are some small unaesthetic 
inflections in the roll acceleration function in Figure 5 near   s = 0, but they would have little effect on 
the dynamic performance of a corresponding Bend. However, we will present another approach that 
appears more attractive. 
 
4. Constructing the roll acceleration for a Bend by inserting a factor.  
 
In order to find another way to construct a roll acceleration function that will generate a Bend, we 
compare the simple spiral roll acceleration of Figure 2 with the Bend roll acceleration of Figure 4. In 
Figure 2 the roll acceleration crosses the s axis at   s = 0   as a result of the presence of the factor   s   in 
equation (2). Looking at Figure 4 we observe that the roll acceleration function for a Bend crosses the 
s-axis once to the left of   s = 0   and again to the right of   s = 0.  We can cause an s-axis crossing at   
s = - f   by inserting into equation (2) a factor of   (s + f ), we can cause another s-axis crossing at   s = f   
by inserting a factor of   (s – f ), and we can remove the crossing at   s = 0   by dropping the factor of   
s. The resulting roll acceleration formula can be written as  

                       )()()()()(_ 22
2

2

fsfsasasjsangler
ds
d −⋅+⋅−⋅+⋅=                             (10) 

 
where   j   is a multiplier to be determined. This roll acceleration extends from   s = - a   to   s = a and 
is evidently symmetric about its mid point. It therefore qualifies as the roll acceleration for a Bend. We 
label this roll acceleration function in accordance with the orders of its zeros as {2,2} where the first   
2   indicates that there is a second order zero at each end and the second    2    indicates that there are 
two first order zeros in the interior. Applying the constraint that the roll velocity must return to zero at 
the end of the Bend at    s = a   we find that it is necessary to have   7/af = , and allowing a 
redefinition of   j   the formula for the roll acceleration becomes  

                                     )7()()(_ 22222
2

2

sasajsangler
ds
d −⋅−⋅=                                  (11) 

 
The shapes of this roll acceleration function and of the corresponding roll velocity and roll angle 
functions are illustrated in Figure 7. 
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Figure 7. Roll functions for {2,2} Bend. 
 
It may be observed that the roll functions of Figure 7 are similar in character to their counterparts in 
Figure 4.  
 
Figures 8 and 9 show an example of a Bend alignment that was obtained by integrating equation (11) 
and that connects two adjacent sections of tangent track. In this example the angle of turn between the 
two tangents is 0.1 radians (= 5.73 degrees), the maximum superelevation of the track is 0.1 radians (= 
about 6 inches superelevation), the balancing speed of the Bend is set as 90 mph, and the height of the 
roll axis above the track is set at 8 feet..  
 

 
FIGURE 8. Alignment of a Bend connecting two tangents whose bearings differ by 0.1 radians 
(= 5.73 deg.) with track bank angle of 0.1 radians (about 6 inches superelevation) at the mid 
point, with length such that the balance speed is 90 mph, and with the track roll axis  8  feet 
above the track. The “y” axis is the symmetry line of the two tangents and the “x” axis is the base 
line that passes through the point of intersection of extensions of the tangents. 
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FIGURE 9. Track roll angle versus distance along the base line for the Bend of Figure 8. 
 
For a Bend with parameters like these it is practical to introduce three approximations that simplify the 
mathematics. First, the tangent function in equation (1) is replaced by its argument (the bank angle in 
radians). Second and third, when integrating the sine and cosine of the track bearing angle,   b_axis(s), 
to obtain respectively the “ y”  and “ x”  coordinates of points on the path of the roll axis, the sine of the 
bearing angle is replaced by the bearing angle itself and the cosine of the bearing angle is replaced by 
unity. The effect of the second and third simplifications taken together is that   b_axis(s)   ceases to be 
the bearing angle and becomes in stead the tangent of the bearing angle. Therefore, when these 
simplifications are being applied   b_axis(s)   will be renamed as   bt_axis(s)   as a reminder. 
Alignments obtained based on these simplifications will differ from corresponding alignments 
obtained when the integrations are carried out numerically on the conceptually correct integrands. 
However, as long as roll angles and bearing angle changes do not exceed about 0.1 radians the 
differences of shape will be small and will not have adverse effects on the motions of vehicles 
traversing the Bends. The forgoing simplifications were used to obtain the alignment illustrated in 
Figure 8.  
 
The algebra for this simplified application is as follows. The track roll angle as a function of distance 
obtained by integrating equation (11) twice can be written as  

                                                         ( )422)(_ saksangler −⋅=                                          (12) 
 
where k is a constant of convenience.  
 
As a result of the third of the three approximations the integral for the “ x”  coordinate of a point on the 
path of the roll axis becomes trivial, and assuming the axes shown in Figure 8 we have the result   
x = s. This means that the parameter   s   no longer measures distance along the path of the roll axis 
and instead measures distance along the “ x”  axis. We therefore change the parameter in equation (1) 
from   s   to   x. Continuing in the coordinate system illustrated in Figure 8, noting that the tangent of 
the bearing angle along the path of the roll axis will to be antisymmetric in   x, we write  
 

                                                 ( ) ( )∫ ⋅⋅=
x

tanglerdt
v
g

xaxisbt
02 __                                     (13) 
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Pursuant to the second of the simplifications, the offset of the path of the roll axis from the base line 
(i.e., along the “ y”  axis in Figure 8) is given by the integral 
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As already noted, with the path of the roll axis defined by equation (14) the compass bearing along it is 
given by  
 

                              ( ))(_arctan)(_arctan)(_ xaxisbtxaxisy
dx
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xaxisb =




=                (15) 

 
Returning to the formula for the displacement of the Bend from the base line, it may be observed that 
expression (14) is zero at each end of the Bend. To obtain the “ y”  coordinates of points on the path of 
the roll axis relative to the base line through the intersection of the two tangents as shown in Figure 8 it 
is necessary to add the “ y”  dimension from the base line to the points where the Bend meets the 
tangents, namely  

                                                                 a
turn ⋅







2
tan                                                      (16) 

 
where   turn   denotes the compass bearing of the second tangent relative to the first tangent. The track 
alignment is obtained from the path of the roll axis by subtracting the overhang illustrated in Figure 1, 
namely  
 
                                                  ( ))(_sin)(_ xanglerhxhango ⋅=                                    (17) 
 
where   h   represents the height of the roll axis above the track. Thus with the axes shown in Figure 8, 
the formula for the “ y”  coordinate of a point on the track becomes 
 

                            ( ))(_sin
2

tan)(_)(_ xanglerh
turn

axaxisyxtracky ⋅−




⋅+=             (18) 

 
The primary constraint is that turn angle of the Bend be equal to   turn. In light of equation (15) the 
equation that expresses that constraint is  

                                                 




=

2
tan)(_

turn
aaxisbt                                                      (19) 

and solving that equation for the multiplier   k   we obtain 
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v
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                                                       (20) 

 
There are two secondary constraints that place lower limits on the value of the half length   a. One is 
that the roll angle of the track not exceed a maximum value denoted   max_roll. That constraint is 
expressed by the equation   rollangler max_)0(_ = . Solving that equation for   a   provides a lower 
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limit of  
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=                              (21) 

 
The other secondary constraint is that the roll velocity along the track not exceed a value 
corresponding to the maximum allowed value of the twist of the track. That constraint is expressed by 
the equation  

                                                   velocr
a

velocr _max_
7

_ =



 −

                                      (22) 

 
where   r_veloc(x)   is the derivative of   r_angle(x)   with respect to   x. Solving that equation for   a   
the corresponding lower limit on the value of   a   is found to be 
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The formulae for the minimum value of the half length,   a , that follow from the secondary constraints 
on maximum roll angle and maximum roll velocity show simple dependence on the turn angle,   turn, 
the balancing speed,   v, and on the maximum roll angle or the maximum roll velocity. It is generally 
desirable to choose a value for   a   that is greater than both of the lower limits if the circumstances of 
the right of way so allow.  
 
To obtain the distance along the track as a function of the “ x”  coordinate along the base line it is 
necessary to carry out a numerical integration. In light of equations (3) and (15) the formula is  
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)(_         (24) 

 
Stepping back to compare the two forms of Bend at which we have looked, it can be noted that the roll 
acceleration formula in equation (11) is simpler than equation (9) that governs Figures 4, 5, and 6 
partly because it does not have a parameter like the parameter   q   of equation (9) that provides an 
additional degree of freedom for constructing Bend shapes. Comparing the roll acceleration function of 
Figure 7 with that of Figure 6 we can observe that the turn angle of a Bend derived from the roll 
acceleration function of Figure 7 could be increased if we could find a convenient way to put a smooth 
dip in the magnitude of the roll acceleration near   s = 0. We can do that by adding to equation (11) a 
factor of    (1 + q s2)   where   q   is an adjustable parameter. Again applying the constraint that the roll 
velocity should be zero at the end of the Bend and solving for the constant multiplier in terms of the 
maximum value of the roll angle we obtain the formula  
 
                         - 120·max_roll·(a + s)2 (a - s)2 (a4 q + 3·a2 (1 - q·s2 ) - 21·s2 )·(q·s2 + 1)  
      d2r/ds2  =  —————————————————————————————         (25)  
                                                                a8·(a4·q2 + 22·a2·q + 45) 
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Setting the parameter   q   to zero causes equation (25) to become equivalent to equation (11). 
Increasing the parameter   q   from zero produces a family of Bends with increasing total turn angles. 
Figure 10 illustrates the roll motions obtained with   a  =   2.0,  with the maximum roll angle set to   0.1  
radians, and with   q   set to   5.0.  
 
 

 
Figure 10. Roll functions for hybridized {2,2} Bend with q = 5.0. 
 
While formula (25) could be used as the basis for a family of Bend shapes, it will be preferable in 
practice to use the more general approach that will be set forth in Section 9 below.  
 
5. Constructing the roll acceleration for a Jog by overlapping three spirals  
 
The term Jog as used herein refers to an alignment shape that begins tangent to one straight line, that 
moves smoothly away from that line toward a second straight line that is parallel to but not collinear 
with the first one, that ends tangent to the second line, and that is antisymmetric about its mid point. A 
crossover between adjacent parallel straight tracks provides an example of what a Jog looks like. 
 
Recall that the roll acceleration for the 2-{2,1} Bend was formed by adding the roll acceleration of a 
spiral to the roll acceleration of another spiral with partial overlap. Analogously, by adding the roll 
acceleration of a {2,1} spiral to that of a 2-{2,1} Bend with the same partial overlap we obtain the roll 
acceleration of a 3-{2,1} Jog. The corresponding formula is 
 
                            d2r/ds2  =     - BOX(-a  - q, s, a  - q)·j·(s + q) (s + q - a)2 (s + q + a)2  
                                            + 2 BOX(-a       , s, a       )·j·(s      ) (s       - a)2 (s       + a)2  
                                                - BOX(-a + q,  s, a + q)·j·(s  - q) (s  - q - a)2 (s  - q + a)2              (26) 
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Because of the complexity of this formula it was not possible with the computing resources available 
during preparation of the present article to obtain a general formula for the values of   s   at which the 
magnitude of the roll associated with equation (26) has its maximum values. However, that would not 
prevent use of the formula in design work. A sense of what the roll functions look like can be gleaned 
from Figures 11 and 12 in which the functions are evaluated for   a = 2,  j = 0.1, and   q = 1.4 (65% 
overlap) and   2.2 (45% overlap)  respectively.  
 

 
Figure 11. Roll functions for 3-{2,1} Jog with 65% overlap. 
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Figure 12. Roll functions for 3-{2,1} Jog with 45% overlap. 
 
For overlap values below 45% or above 65% the roll acceleration curves become less smooth and 
hence presumably less desirable for design of Jogs for railroad track. Even with the parameters of 
Figures 11 and 12 that are usable, one can observe unaesthetic inflections in the acceleration curves. 
The combination of that lack of smoothness and the mathematical complexity of the algebra of 
equations like equation (26) make Jogs of the above type unappealing in comparison to those that are 
presented in the following Sections. 
 
6. Constructing the roll acceleration for a Jog by inserting a factor.  
 
We now look at a second way to form the roll acceleration function for a Jog. Just as each of the Bend 
formulae has one more root (or s-axis crossing) than the corresponding Spiral formula, so, each of the 
three curves (roll acceleration, roll velocity, and roll angle) defining the roll motion of a Jog needs to 
have one more root than the corresponding curve for a Bend. Starting from equation (10) which was 
the initial equation for a Bend and which is symmetric about the mid point, we can both add another 
root and make the resulting function antisymmetric by inserting a factor of   s   so that the added root is 
at the mid point of the function. The result is 
 

                        22
2

2

)()()()()(_ asfssfsasjsangler
ds
d −⋅−⋅⋅+⋅+⋅=                        (27) 

 
where   f   is between   0   and   a. Integrating that equation twice to obtain the formula for the change 
in roll angle over the length of the Jog and requiring that the change in roll angle be zero at the end of 
the Jog, we find that we must set   

3
af = . If we then solve for the constant multiplier in terms of 

the maximum roll angle in the Jog,   max_roll, the formula for the multiplicative Jog becomes  



Bends, Jogs, And Wiggles for Railroad Tracks and Vehicle Guide Ways, Louis T Klauder Jr.       19 
(Preprint, June 24, 2002) 

 
 

                         
9

22222

2

2

512
)3()(max_roll59049-

)(_
a
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sangler

ds
d −−⋅⋅⋅

=                   (28)  

 
Figure 13 illustrates the shapes of the roll functions for the multiplicative Jog. 
 

 
 Figure 13. Symmetric (i.e., antisymmetric) Jog roll functions via 5 factor roll acceleration. 
 
The overall turn angle of the antisymmetric Jog can be seen to be zero because the curve for the roll 
angle is antisymmetric about the mid point of the Jog.  
 
7. Jogs as Shapes for Turnouts and Crossovers 
 
This Section configures a jog intended to serve as the alignment for a crossover between two parallel 
tangent (i.e., straight) tracks. As the track bearing angles relative to the two tangents and the track roll 
angles are small, it is reasonable to use the simplified treatment set forth in Section 4 above. 
 
The formula for the roll angle of the symmetric Jog as a function of length along the track is obtained 
by integrating equation (28) twice and can be written in the form  
 

                                                    ( )422)(_ sasksangler −⋅⋅−=                                           (29)  
 
where  k  is a constant of convenience. The corresponding form of equation (28) for the roll 
acceleration is  
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                                       ( ) ( )22222 324)(_ assasksaccelr −⋅−⋅⋅⋅−=                                (30)  
 
The minus sign is inserted so that for   k   positive, at the left end of the Jog where   s < 0   , the initial 
bank and turn will be positive which is interpreted as being to the left.  
 
Applying the first small angle approximation, the integral for the tangent of the bearing angle along the 
path of the roll axis versus distance,   x , along the tangents becomes 
 

                                   ( ) ( ) ( )
2

522

2 10·v
 x- akg

__
⋅⋅=⋅⋅= ∫−

x

a
tanglerdt

v
g

xaxisbt                     (31)  

 
Applying the second small angle approximation, the integral for the coordinate of a point on the roll 
axis along a “ y”  axis normal to the two tangents and with zero value mid way between them is 
 

                                                    ( ) ( )∫ ⋅=
x

taxisbtdtxaxisy
0

__                                         (32) 
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v
xxaxaxaxaaxkg −+−+−⋅⋅=  

 
In this situation the primary constraint is that the lateral displacement over the length of the Jog, 
denoted   jog_dist, should equal the specified distance between the centerlines of the two parallel 
tangent tracks. With the roll angle zero at each end of the Jog there is no overhang at either end, and 
this constraint takes the form 
 

                                                ( )
2
_

_
distjog

aaxisy =                                                 (33) 

 
Solving that constraint for   k   we find 
 

                                               11

2

256
_3465

ag
vdistjog

k
⋅⋅

⋅⋅=                                               (34) 

 
The secondary constraints are that the roll angle and twist of the track should nowhere exceed the 
respective limits chosen for those two properties. (The roll velocity determines the track twist.) 
 
The maximum value of roll angle occurs at   s = -a/3   and   s = a/3 so that this constraint is expressed 
as 
                                              ( ) rollaangler max_3/_ =−                                           (35) 
 
and the value of shape half length such that the maximum magnitude of the roll angle is   max_roll   is 
found to be given by 
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rollg

vdistjog
rolla

max_81
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lim__

⋅⋅
⋅⋅⋅

=                                    (36) 

 
The magnitude of the roll velocity has its maximum value at   s = 0   and the value of the shape half 
length such that the magnitude of the roll velocity there equals   max_r_veloc   is found to be given by 
 

                                      3/13/1

3/23/13/1

_max_8
_6930

lim__
velocrg

vdistjog
twista

⋅⋅
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Both of the above expressions for the half length are evaluated, and the larger value is used so that both 
of the secondary constraints are satisfied.  
 
Both formulae for the Jog’s half length show that the length of the Jog will depend in a simple way on 
the balancing speed,   v, the Jog’s lateral displacement,   jog_dist, and either the maximum bank angle,   
max_roll, or the maximum roll velocity,   max_r_veloc.  
 
Since we are looking here at crossovers we need to take account of the fact that physical crossovers 
begin and end with physical track switches. Physical track and guide way switch design is an immense 
field in which many concepts for balancing cost and performance have been developed. What is noted 
here is that costs of constructing and maintaining a switch are increased when there is an increase in 
the length of the assembly that must move when the setting of the switch is changed. That length 
increases when there is an increase in the track length over which geometry prevents a guide rail or 
rails from simultaneously being in the working location for the both routes. This means that it is 
desirable to arrange to have the initial lateral separation of the “ diverging”  path from the “ through”  
path develop as rapidly as vehicle dynamics will allow. We have observed that raising the height of the 
vehicle roll axis above the track is always dynamically beneficial. However, raising the vehicle roll 
axis also causes an increase in the distance from the start of a Jog to the point at which the Jog reaches 
a given lateral displacement toward the final tangent. Therefore, in contrast to the application of the 
Bend in Section 4 above, for this application of a Jog as a crossover the roll axis is not raised and the 
path of the track is given by equation (32) itself. We thereby make some sacrifice of dynamic 
performance in order to reduce the cost of the crossover. 
 
Figure 14 illustrates such a crossover for the conditions that the two adjacent sections of tangent track 
have a centerline separation of 20 feet, that the maximum superelevation in the crossover is 0.05 
radians (about 3 inches superelevation), and that the balance speed of the crossover is 90 mph. The 
crossover extends for 781 feet in each direction from the center of symmetry. Figure 16 shows the 
track roll angle profile corresponding to Figure 14 as given by equation (30). (Formulae for Figures 15 
and 17 are presented following Figure 17.) 
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Figure 14. A Jog constructed from the roll acceleration of equation (30) which has a 2nd order 
zero at each end. This Jog is configured as a crossover between tangent tracks with centerline 
spacing of 20 ft, with maximum roll angle of 0.05 radians (corresponding to maximum 
superelevation of about 3 inches), and with dimensions chosen so that the balancing speed is 90 
mph. The total length of the crossover measured along the tangents is 1,562 ft. (Note that in 
North American practice crossovers are not usually designed for high speed operation and do 
not usually include superelevation.) 
 

 
FIGURE 15. A Jog constructed from the roll acceleration of equation (30) with a 1st order zero at 
each end. Other design parameters are the same as those for Figure 14. Because the roll angle 
builds more quickly at each end than is the case when the roll acceleration has 2nd order zeros at 
the ends, this crossover is shorter than the one in Figure 14. The total length of this crossover 
measured along the tangents is 1,424 ft. 
 

 
FIGURE 16. Track roll angle for Jog of Figure 14. 
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FIGURE 17. Track roll angle for Jog of Figure 15. 
 
We look next at the rationale of Figures 15 and 17. As noted at the end of Section 2 above, when the 
roll axis is not raised above the plane of the track it is reasonable to look at roll acceleration functions 
that have 1st rather than 2nd order zeros at the ends. Starting with the counterpart of equation (27) but 
with 1st order rather than 2nd order zeros at   s = - a   and   s = a   and repeating the sequence of steps 
that lead from equation (27) to equation (28), one finds that the counterpart of equation (28) with a 1st 
order zero at each end is  
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The formula for the roll angle of the symmetric Jog obtained by integrating equation (38) twice can be 
written in the form  

                                                 ( )322)(_ sasksangler −−=                                            (39)  
 
where k is another constant of convenience.  
 
Applying the simplified treatment as in the previous case the integral for the tangent of the bearing 
angle versus distance,   x , along the tangents becomes 
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Applying the second small angle approximation, the integral for the distance along a “ y”  axis normal 
to the two tangents is 
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The primary and secondary constraints and the manner in which they are used to determine   k   and   a   
are the same as in the previous case. The solution for   k   is  
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The lower limit for   a   such that the   max_roll   constraint is satisfied is 
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and the lower limit for   a   such that the   max_r_veloc   constraint is satisfied is 
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The constraints on the Jog’ s half length show the same dependence as before on the balancing speed, 
the Jog’ s lateral displacement, and on the maximum bank angle or maximum roll velocity but with 
different constant factors.  
 
Figure 15 illustrates a crossover based on the above formulae for the conditions that the two adjacent 
sections of tangent track have a centerline separation of 20 feet, that the maximum superelevation in 
the crossover is 0.05 radians (about 3 inches superelevation), and that the balance speed of the 
crossover is 90 mph. The crossover extends for 712 feet in each direction from the center of symmetry. 
Figure 17 shows the track roll angle profile corresponding to Figure 15 as given by equation (39).  
 
In contemporary North American railroad practice turn-outs from tangent tracks do not incorporate 
superelevation and therefore do not have defined balancing speeds. Construction of a switch that 
incorporated superelevation as prescribed by the formulae of this Section would require progressive 
lowering of the rail seats of the low rail of the diverging route and would require a novel machining of 
the “ point”  for the through route. The points would also be longer than the points of conventional 
railroad switches.  
 
8. Constructing the roll acceleration for a Wiggle by inserting a factor 
 
The term Wiggle as used herein refers to an alignment shape that begins tangent to some straight line, 
that makes a smooth lateral excursion away from and then back toward that straight line, that ends 
again tangent to that straight line, and that is symmetric about its mid point. (We will see in Section 9 
below that asymmetry can be accommodated by addition of higher order shapes.) As noted in the 
introduction, a Wiggle can be an effective way for an otherwise straight alignment to circumvent a 
local obstruction that intrudes from one side. We construct a roll acceleration formula that can exhibit 
the features of a Wiggle by adding another linear factor to the Jog roll acceleration formula in equation 
(27). The initial formula is 
 

                         22
2

2

)()()()()()()(_ asisqsfspsasjsangler
ds
d −−−+++=            (45) 

 
The parameters   p   and   i   are eliminated by applying the constraints that the roll velocity and roll 
angle both return to zero at   s = a. The asymmetry of the resulting roll acceleration polynomial is 
controlled by    (f – q). It is therefore convenient to replace   f   and   q   by the new variables   b = (f + 



Bends, Jogs, And Wiggles for Railroad Tracks and Vehicle Guide Ways, Louis T Klauder Jr.       25 
(Preprint, June 24, 2002) 

 
q)/2   and   c = (f – q)/2. We want these shapes to be symmetric so that   c   is set to zero and drops out. 
This makes the roll acceleration a polynomial in   s   that depends on   j,   a,   and   b.  
 
The following figures illustrate the shape of the roll angle function for two values of the parameter   b. 
 

 
Figure 18. Symmetric roll functions via 6 factor roll acceleration with b = 1.0. 
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Figure 19. Symmetric roll functions via 6 factor roll acceleration with b = 1.1. 
 
Looking in Figure 18 at the areas between the roll angle curve and the distance axis one can see that 
the amounts of curvature to the right and to the left are approximately equal so that the total angle of 
turn over the length of the shape will approximate the desired value of zero. By way of contrast, the 
roll angle curve of Figure 19 is biased to one side so that the resulting shape will look much like a 
Bend and not much like a Wiggle.  
 
The roll angle function corresponding to equation (45) is a 10th order polynomial. To obtain a closed 
form algebraic expression for the constraint that the compass bearing of the Wiggle be the same at the 
end as at the beginning would require putting that 10th order polynomial roll angle function into 
equation (1) and then obtaining the compass bearing angle as the integral of equation (1) in closed 
form. As that is considered impossible we will provide an illustration using the simplified method 
described in Section 4 above. The formula for the tangent of the bearing angle on the path of the roll 
axis is then available in closed form. Imposing the requirement that the tangent of the bearing angle be 
the same at the end as at the beginning fixes the value of   b, and in the context of the simplified 
treatment the equation for the roll acceleration of a Wiggle (with   j   redefined) becomes  
 

                                  )3318()()(_ 4224222
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ssaasajsangler
ds
d +−−=                 (46) 

 
What comes next is an example of application of a Wiggle to avoid a single obstacle in an otherwise 
straight section of track. The illustration makes use of the mathematical simplifications that were 
explained in Section 4 above. The roll angle function corresponding to equation (46) can be written as  
 
                                           )11()()(_ 22422 assaksangler −−=                              (47) 
 
where   k   is a constant of convenience. Integrating the simplified version of equation (1) yields  
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and evaluating the simplified form of the integral for   y_axis   yields 
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The “ y”  coordinate along the path of the track is 
 
                     ( )( ) )(_)(_arctancos)(_)(_ xhangoxaxisbtxaxisyxtracky ⋅−=             (51) 
 
where    o_hang(x)   is the overhang as described previously.  
 
The primary constraint is that the lateral excursion from the general tangent have a specified value that 
we denote by   swing_dist   and takes the form 
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                                                        distswingtracky _)0(_ =                                  (52) 
 
It is evident from equation (48) that   bt_axis(0) = 0. Therefore when equation (51) is used in equation 
(52) the cosine factor is unity and can be dropped. To get the constraint into a form that can be solved 
algebraically we can introduce another approximation that is in keeping with the simplified treatment. 
Namely, in the equation for the overhang we replace the sine of the roll angle by the roll angle itself 
and write 
 
                                                  )(_)(_ xanglerhxhango ⋅=                                    (50) 
 
We can then solve for   k   and find  
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There are two secondary constraints. One is that the maximum roll angle that occurs at   s = 0   not 
exceed a specified value we denote as   max_roll. The lower limit for   a   obtained by solving that 
constraint is 
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The other secondary constrain is that the maximum roll velocity (which corresponds to maximum 

allowed track twist) which occurs at   
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max_r_veloc. The lower limit for   a   obtained by solving that constraint is 
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The values used for the example illustrated in Figures 20 and 21 are: swing distance = 20.0 feet; 
balancing speed = 90 mph; roll axis height = 8.0 feet; maximum roll velocity corresponding to a 
maximum change of cross level in 62 feet = 1.2 inches; and the acceleration of gravity = 32.17 
feet/second_squared. With the selected parameters the roll angle does not get as large as the typical 
limit of 0.1 radians. While the alignment given by this simplified construction is not identical to the 
alignment that would be obtained if all of the trigonometric functions of the method were fully 
evaluated, its utility and dynamic characteristics will be just as good as those of a corresponding 
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construction with the trigonometric functions fully evaluated. However, if this simplified treatment is 
used in practice, the engineer will need to be aware that the relationship between curvature and 
superelevation is slightly different than normal and will need to take account of that when establishing 
authorized speeds.  
 

 
FIGURE 20. Illustration of a simplified Wiggle that swings 20.0 feet laterally to avoid an obstacle 
along what is otherwise straight track. 
 

 
FIGURE 21. The superelevation (assuming a 60.0 inch gage) of the same Wiggle as in Figure 20. 
 
9. Simplification and Generalization by means of Gegenbauer Polynomials 

 
We next look again at equation (11)  
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that gives the roll acceleration function for a Bend. That equation is integrated once to obtain the roll 
velocity function and a second time to obtain the roll angle function. The fact that we need to work 
with the integral of    (a2 – s2)2    times a polynomial suggests a check to see if one of the classical 
orthogonal polynomial families has a weighting function that can take the form    (a2 – s2)2.  Consulting 
a treatise on orthogonal polynomials such as Reference 6, one finds that the Gegenbauer polynomials 
denoted   ( )( )xCn

α    are defined with respect to the weighting function   (1 - x2)
�

- ½) which with suitable 
choices for the variables can take the form with which we are dealing. Starting with equation 22.13.2 
of Reference 6, defining   m =  - ½ , scaling the variable of integration so that the limits of integration 
are from   - a   to  a, and working with   n ���� one can obtain the relation 
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It may be noted that ( )( )xCn

α  is a polynomial of order n that is an even or odd function of x depending 
on whether n is an even or odd integer.  
 
Looking at the explicit expression for   ( )( )asC /2/5

2    and introducing a constant   j2   it is easy to verify 
that equation (11) that gives the roll acceleration for a Bend can be rewrite as 
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In the same way one can verify that the right sides of equations (2), (28), and (46) that give the roll 
acceleration functions for a Spiral, for a Jog, and for a Wiggle can be written as  
 

                                               ( ) ( )( )asCsaj m
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n /2/122 +−⋅   ,   n ��1,                                    (59) 
 
with   n = 1, 3,   and   4   respectively and with   jn   denoting the weighting coefficient for the order n 
contribution. We are therefore lead to look upon a series of terms of the form of expression (59) with   
n >= 1 as the roll acceleration of defining a general connecting shape in which the curvature varies 
with distance over the length of the shape. 
 
By virtue of equation (57) the equation for roll velocity obtained by integrating expression (59) once 
will contain a factor of    (a2 – s2)3. For terms with   n >= 2   the contributions to the roll angle obtained 
by integrating a second time will contain a factor of   (a2 – s2)4. Thus the two constraints that the roll 
velocity and roll angle both return to zero at    s = a    will be satisfied automatically for terms with   n 
>= 2. 
Applying equation (57) twice the contribution of a term with   n >= 2   to the roll angle is found to be 

                        )/(
)(

)22()12()1(
)32()12( )2/5(

22

)2(22

asC
a
sa

nmnmnn
mmj m

n

m
n +

−

+−
++++−

++
                      (60) 

 
It was pointed out in Section 8 that with the Wiggle roll acceleration given by equation (46) or 

equivalently by   ( ) ( )( )asCsaj /2/5
4

222
4 −⋅    the total compass bearing change over the length of the 

Wiggle will vanish as it should if the “ simplified”  treatment is used but not if the trigonometric 
integrands are fully evaluated. Therefore, in a “ full”  treatment that includes even order Gegenbauer 
terms with   n >= 4   it is necessary to include at least a little   n = 2   or Bend component and to adjust 
the strength of that component so that the net change of compass bearing over the length of the shape 
has the required value.  
 
As a rule-of-thumb, the “ simplified”  method can be used with no problem for a shapes that connects to 
a tangent at each end, and the “ full”  method should be used for any shape that connects at one or both 
ends to a curved arc. 
 
It should be noted that equation (57) holds for non-integral values of   m   provided that    m > -1.  As 
an example, choosing    m = 2.5   would cause the roll acceleration to rise from zero more slowly at 
each end of the shape but would then mean that roll acceleration values would be greater in the interior 
of the distance covered by the shape. Choosing   m = 1.5   would have the opposite effects.  
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Finally we observe that if the roll acceleration includes a  ( ) ( )( )asCsaj m
n

m

n /2/122 +−  term with   n = 1 
then the second integration to obtain the contribution to the roll angle requires special treatment. In this 
case the contribution to roll angle is 
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When the above integral is evaluated for    s = a    and plotted as a function of    m    it is found that that 
for m > 0 the integral itself is positive and is approximately proportional to    e(8m/3) .  
 
For   m = 2    expression (61) becomes 
 
                            ( ) ( )assasasaaj 42/521353516 7523467

1 −+−+−                    (62) 
 
and this expression is the roll function of the order {2,1} improved spiral described in Section 2 above.  
 
 
 

 
Figure 22. Shapes of contributions by expressions (62) and (60) to the track roll angle when   
m = 2.  
 
Figure 22 illustrates the shapes of contributions to the roll angle by expressions (62) and (60) when   
m = 2    with the respective   jn   factors all equal to unity.  
 
When there is need for a shape that includes some bending, jogging, and/or wiggling and in addition 
connects adjacent arcs whose curvatures differ, then the combination of Gegenbauer based terms will 
need to  include an    n = 1   contribution.  
 
Summarizing, we have found that a track or guide way shape that incorporates a combination of spiral, 
Bend, Jog, and Wiggle features can be obtained from a roll angle function defined as the sum of the   
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n = 1   term of expression (62) plus some modified Gegenbauer terms of the form of expression (60) 
with   n > 1.  A shape obtained from a sum of terms of this kind will be referred to for simplicity as a 
series shape. 
 
The definitions of the modified Gegenbauer terms ensure that the first and second derivatives of roll 
angle with respect to distance will be zero at each end of a series shape. As long as    m > 1   the same 
will be true of the third derivative of the roll angle with respect to distance which means, in light of the 
discussion at the end of Section 2 above, that the first derivative of the curvature of the track with 
respect to distance will be zero at each end of the shape and therefore free of discontinuity.  
 
This Section concludes with the observation that any polynomial roll acceleration function that has 
zeros of the same order at both ends and zero average value so that it produces zero net change in roll 
velocity (and that is therefore suitable for defining a track shape) can be expressed as modified 
Gegenbauer series. This observation follows from the orthogonality feature of the Gegenbauer 
polynomials. Given a roll acceleration function   accel(s)   with zeros of order   m    at   s = - a   and   
s = a, define coefficients   m

naccel    for   n >= 1   by the formula  
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where   m   is the order of the zeros of the acceleration function    accel(y)   at   y = - a   and   y = a. 
The normalization constant is given by the standard formula 
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The original roll acceleration function,   )(saccel ,    is then reproduced by the series 
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where    N   is the largest value of   n   for which equation (63) gives a non-zero coefficient.  
 
While this series representation uses Gegenbauer functions, it is not a normal Gegenbauer series 
expansion, and it cannot be used to represent arbitrary polynomials.  
 
As an example, the modified Gegenbauer series representation for the roll acceleration function  
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(taken from reference 2 and representing a form of spiral) can be expressed as the sum of four 
modified Gegenbauer polynomial based terms with   m = 3   and with orders   n = 1, 3, 5, and 7. The 

coefficients of the four terms are   
143

7ak ⋅−
   times   1.0, 50980.0 , 14035.0 , and 01651.0   respectively  
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10. Using spiral, Bend, and Jog combinations to upgrade curves with inadequate offset 

 
When track engineers consider what needs to be done to existing rail lines to allow authorized speeds 
to be increased they often find a need to lengthen transition spirals between pairs of adjacent arcs, each 
pair consisting of a tangent and a curve or two reverse or progressive curves. For pure spirals of a 
given traditional or improved type, an increase of spiral length requires a corresponding increase of the 
offset of the arc pair. Sometimes the offset can be increased by a lateral shift of the alignment of an 
entire curve. When it is not practical to shift the curve of a tangent to curve transition it has been a 
common practice to replace part of the tangent by a small curve of some sort opposite in direction to 
the main curve and to increase the offset in that way. (See for example the article by H. Baluch, 
reference 7.) When this latter approach is the one selected, the shape that will be most attractive from a 
dynamic point of view will be a a hybrid spiral whose roll motion is the sum of two Gegenbauer based 
components, one an improved spiral compoent, and the other a component for a Bend away from the 
direction of the main curve. The present Section explains how the hybrid shape is calculated for this 
situation and illustrates a sample application.  
 
The Bend example of Section 4, the Jog example of Section 7, and the Wiggle example of Section 8 
have the common feature that in each one the transition shape is bordered at each end by tangent track. 
As a result, in those examples the non-standard relationship between track curvature and bank angle 
inherent in the simplified treatment is confined to the interiors of those transitions and would not 
necessarily affect the relationship between track curvature and bank angle of ordinary curves. We now 
look at the situation that the transition shape connects on at least one end to an ordinary curve. If the 
simplified method were applied in this situation there would be a need, in principle, to alter the 
relationship expressed by equation (1) between track curvature and bank angle throughout the rail 
system. The associated change in bank angle is small so that that would be a possibility. However, it is 
an unattractive possibility both because of basic physics and because of the costs of making changes to 
existing standards and track. Conversely, while the simplified procedure can be attractive for 
exploratory studies, when the time comes for engineering design the full treatment can be applied just 
as easily as the simplified treatment, and that is true both for the current situation and for the situations 
of the previous examples. The example in this Section will therefore be based mainly on the full 
treatment, and some figures computed with the simplified treatment will be included just for 
comparison.    
 
Presentation of this example begins with an elaboration of equation (1). Denoting the overhang in the 
curve by   o_hang_c   and denoting the track bank angle in the curve by   r_angle_c   we can write  
 
                                             )__sin(__ canglerhchango ⋅=                                         (67) 
 
Then pursuant to equation (1)   r_angle_c   is obtained numerically as the solution of the 
transcendental equation  

                         ( )
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2

canglerhcradiusg
v

cangler                  (68) 

 
(   r_angle_c   differs very little from the value that it would have with   h = 0 so that equation (68) can 
be solved by iteration that converges very rapidly. ). 
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The roll acceleration function has the form presented in Section 9 above with the parameter   m   set to   
2, namely 

                                              ∑ ⋅⋅−=
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2/5222 )/()()(_ asCjsasaccelr nn                          (69) 

 
Since the expression on the right of equation (69) is just a polynomial, the first two integrations, 
namely 
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can easily be done in closed form. The constant of integration for   r_angle(s)   is zero because the 
example is for a transition that start from a tangent. 
 
Evaluating the preceding integral at   s = a, the expression for the roll angle at the end of the shape is 
found to be  

                                                           
21

16
)(_ 1

6 ja
aangler

⋅−
=                                      (72)  

 
a result that illustrates the fact that the   n = 2   term (i.e., the Bend component) makes zero 
contribution to the net change in roll angle over the length of the shape.  
 
A shape that provides a transition between a tangent and a curve is subject to two primary constraints. 
One is that the roll angle at the end of the shape match the roll angle,   r_angle_c, of the curve. Solving 
equation (72) for   j1   this constraint gives  
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With   1j    replaced via equation (73) the remaining parameters of the shape are   2j    and   a. For the 
purposes of this example we will set   12 876.0 jj ⋅=    whereupon the shape will depend just on   a. 
(There is nothing magical about 0.876; it just happened to be convenient for incedental reasons.)  
 
The integrals to obtain the compass bearing and coordinates on the path of the roll axis are 
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The second primary constraint is that the tangent to curve offset implied by the transition shape must 
agree with the specified offset. To obtain the offset implied by a tentative form of the shape we 
conceptually connect the curve to the end of the shape, see where that places the center of the curve, 
determine the distance from that location for the curve center to an extension of the tangent, and 
subtract the radius of the curve from that distance. The resultant formula for the computed offset as a 
function of the half length,   a, is 
 
  ( ) cradiusendhangocradiusaaxisbaaxisyaoffset _)___()(_cos)(_)( −−⋅+=        (77) 
 
An iterative search procedure is used to find the value the half length   a   that causes the offset 
computed per equation (77) to agree with the specified offset.  
 
The illustration is for a transition between a tangent and a curve with curvature of   1.0  degree per  100 
ft.  chord that is banked for a balancing speed of   90.0  mph and that is offset from the tangent by   1.0  
ft. The roll axis is located   8.0   feet above the track and the value used for the acceleration of gravity 
is   32.17 ft/sec2. 
 
The spiral plus Bend shape obtained for this situation by applying the full treatment with   

12 876.0 jj ⋅=    is illustrated in Figure 23. Figures 24, 25, and 26 show the similar shape obtained via 
the simplified method for the same parameters.  
 
In order to allow a comparison to illustrate the beneficial effect of adding the Bend component to the 
improved spiral, Figures 27 through 30 are the counterparts of Figures 23 through 26 except that they 
have   0.02 =j    so that they show plain improved spirals.  
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FIGURE 23. Illustration of a hybrid shape that combines improved spiral and Bend components. 
This shape provides a transition from a tangent to a curve and is about twice as long as a a 
corresponding transition consisting just of an ordinary improved spiral. A shape of this type is 
useful when the offset is so small that with just an improved spiral the track twist would be too 
large or the authorized speed could not be raised to the extent desired.  
 

 
FIGURE 24. Illustration of a hybrid shape just like that of Figure 23 but constructed using the 
simplified treatment rather than the full treatment. 
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FIGURE 25. Detail of behavior of alignment of Figure 24 near the tangent. 
 

 
FIGURE 26. The roll angle function corresponding to Figure 24. 
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FIGURE 27. Illustration of a plain improved spiral joining the same tangent and curve as in 
Figure 23.  
 

 
FIGURE 28. Illustration of a plain improved spiral just like that of Figure 27 but constructed 
using the simplified treatment rather than the full treatment. 
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FIGURE 29. Detail of behavior of alignment of Figure 28 near the tangent. 
 

 
FIGURE 30. The roll angle function corresponding to Figure 28. 
 
The objective in this Section is to get an idea of how well combinations of spirals plus Bends can 
alleviate inadequate offset between curves and tangents when track is being reconfigured for higher 
speeds. Comparing Figures 23 and 27 it can be seen that the addition of the Bend component causes 
the length of the transition shape to increase from about 850 feet to about 1,760 feet (Length along the 
track is a little more than length along the “ x”  axis) and causes the maximum track twist (in inches 
crosslevel change per 62 feet) to drop from 0.90 to 0.60. This is the kind of benefit that was being 
sought, and it is believed that this kind of shape will be dynamically superior to alternative shapes that 
achieve a similar result.  
 
Comparing Figures 23 and 24 one can observe that for   2j    a given multiple of   1j     , in comparison 
to the full treatment, the simplified treatment produces a shape that is a little shorter and a maximum 
track twist that is a little greater.  
 
Another way that the design challenge of this Section could be met would be to insert a separate pure 
Jog right ahead of the spiral so that the offset at the start of the spiral would be larger and so that an 
ordinary improved spiral could be used. One might therefore wonder if the addition of a Jog 
component to an improved spiral might produce a shape as useful as that illustrated in Figure 23. A 
shape derived from a roll motion composed just of modified Gegenbauer terms with   n = 1   and   
n = 3   is indeed longer than an improved spiral with the same offset. However, it has the significant 
defect that there is a region within the shape in which the roll angle is greater than the roll angle of the 
curve. That defect can be cured by adding a Bend component to the mix, but it seems that for this 
situation a Bend component is altogether more effective than a Jog component. It may also be noted 
that when a Bend and a Jog are components of a shape with a given length, the Bend will have an 
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effective wave length that is twice that of the Jog. As a result, for a given transition shape length and 
vehicle speed, the vehicle suspension oscillation stimulated by a Bend will tend to be less than the 
oscillation stimulated by a Jog.  
 
11. Classification of adjacent arc relationships 

 
We have found a way to construct a variety of shapes with good dynamic characteristics. We have 
observed some alignment design problems for which such shapes can provide solutions. We want next 
to look at the ways that neighboring arcs can be related geometrically as it affects the types of shapes 
needed for connecting them. Such a geometrical relationship will be referred to as an Adjacent Arc 
Configuration. In this Section we are interested only in how connecting shapes are affected by the 
relationships between adjacent arcs and not in how shapes can be modified so as to avoid obstructions. 
 
We begin by looking at the three Adjacent Arc Configurations in which spirals have traditionally been 
applied as illustrated in Figure 37. 
 

 
Figure 37. Illustration of the three traditional Adjacent Arc Configurations. Here one arc has 
positive, zero, or negative curvature, the other arc has positive curvature, and the offset between 
the two arcs is positive. (Shapes shown in figures in this Section are illustrative and are hand 
drawn rather than calculated.) 
 
In Figure 37 the spiral labeled   a   connects reverse curves, the spiral labeled   b   connects a tangent to 
a curve, and the spiral labeled   c   connects progressive curves. It is characteristic of a pure spiral that 
the curvature (or more accurately, the curvature of the path of the track roll axis) varies monotonically 
with distance. In order for an Adjacent Arc Configuration to be connected by a pure spiral it must have 
positive offset.  
 
Figure 38 illustrates three Adjacent Arc Configurations that also have positive offset but in which the 
connection to the “ other”  (greater curvature) arc is opposite to the normal connection.  
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Figure 38. Illustration of three non traditional Adjacent Arc Configurations with positive offset. 
 
In Figure 38 the curvature of each shape changes sign once more than the corresponding shape of 
Figure 37. That suggests that each shape can be realized by a sum of   n = 1   and n   = 2   terms. In 
visual terms and thinking of movement from left to right in the figure, each shape would be a 
combination of a spiral to the right and a Bend to the left. 
 
Figure 39 illustrates additional non traditional Adjacent Arc Configurations that arise when the offset 
between the two arcs is negative. 
 

  
Figure 39. Adjacent Arc Configurations with negative offset. 
 
Referring back to Figure 37 where the offset is positive it can be seen that for each of the three shapes 
shown there is only one natural path. The situation is different when the offset between the two arcs is 
negative as illustrated in Figure 39. If the connecting shape is required to stay outside of the larger 
curvature arc it will look respectively like   A ,   B , or   C. If the connecting shape is required to stay 
above the smaller curvature arc it will look like   b   or   c. If neither of those constraints is imposed the 
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connecting shape can look like   a. If the two arcs have curvatures that are equal and opposite then 
shape   a    would seem the most natural. If the curvature of the smaller curvature arc is smaller by a 
sufficient margin then shape   A   will have curvature whose magnitude is nowhere greater than that of 
the “ other”  (larger curvature) arc. Thus it appears reasonable to consider the shapes that are applicable 
with negative offset to be   A,   B, and   C   with the proviso that   A   should be replaced by a shape of 
type    a    that minimizes the maximum curvature of the shape when the curvatures of the two arcs are 
so close in magnitude that shape   A    does not have that property. 
 
 It should be noted that the offset does not need to be negative in order for connecting shapes that look 
like   A ,   B ,   and   C   to be useful. Shapes like   A ,   B ,   and   C   will also be useful for Figure 37 
type Configurations where the offset is positive but inadequate with the result that shapes of the type 
shown in Figure 37 would be too short to allow limits on track warp and roll acceleration to be 
satisfied. By the same token the offset boundary value that determines whether a particular Adjacent 
Arc Configuration should be associated with Figure 37 or 39 is not really zero but will rather be some 
positive value. What that positive boundary value is will depend on circumstances and particularly on 
the design speed of the track.  
 
A figure like Figure 38 but with negative offset is not included because the geometrical properties of 
the connecting shapes would be the same as those already shown in Figure 38. 
 
Figure 40 illustrates the connecting shape that applies when the adjacent arcs are non-parallel tangents.  
 

 
Figure 40. Illustration of shape connecting non-parallel tangents. 
 
The shape labeled   e    in Figure 40 is a Bend. It corresponds to the shape labeled   e   in Figure 38 if 
as the radius of the “ other arc”  goes to infinity its center moves not upward but rather to the right and 
downward, and the offset goes to minus infinity. This is the only Adjacent Arc Configuration in which 
the offset is undefined. 
 
Figure 41 illustrates the connecting shapes that are applicable when the two arcs are both tangents. 
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Figure 41. Illustrations of shapes to connect neighboring tangents. 
 
The upper part of Figure 41 is for tangents with offset. The lower tangent corresponds to the tangent of 
Figures 37 and 38 and the upper tangent corresponds to the upper arc of Figures 37 and 38 but with its 
curvature reduced to zero. Shapes    b    and    e    correspond to the identically labeled shapes of 
Figures 37 and 38. Shape   b   is a Jog and is the recommended form for crossovers and turnouts. 
Shape   e    is a Bend.  
 
The lower part of Figure 41 is for collinear tangents. The preceding comments apply here as well with 
the exception that in order to be non-trivial shape   b    needs to change from a Jog to a Wiggle and 
shape   e    is a Bend with some Wiggle added. 
 
Whereas it would be reasonable to use shape   e    of Figure 38 in practice, it does not seem very likely 
that either of the shapes labeled   e   of Figure 41 would be used in practice. (The practical solution for 
such large angle turns would likely be a spiral – curve – spiral sequence.) Still, it is desirable to take 
note of all of the possibilities.  
 
12. Modified Gegenbauer series for alignments that avoid obstacles 

 
This Section outlines a procedure for calculating a series shape that circumvents fixed obstructions and 
passes to the left or the right of each one as specified. The ordinary boundary constraints (unrelated to 
obstructions) depend on the adjacent arcs and are as indicated Section 4 for Bends, in Section 7 for 
Jogs, in Section 8 for Wiggles, and in Section 10 for spirals. 
 
The steps are as follows:  
 
[1] – Use the first primary constraint to obtain the lowest order modified Gegenbauer series coefficient 
as a function of the shape half-length parameter,   a. Choose initial estimates for remaining series 
coefficients as multiples of the lowest order coefficient. Include terms of order up to a user specified 
limiting order denoted   N. Also choose an initial estimate for the half-length,   a. 

[2] – Evaluate the integrals that give the bearing and coordinates along the path of the roll axis.  
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[3] –Determine the coordinates of points along the track taking account of the bearing angle, the roll 
angle, and the roll axis height.  

[4] – Using the track shape that results from the current estimates for the half-length and the series 
weights, determine the amount by which the computed alignment fails to satisfy the remaining 
constraints and the distance by which the computed alignment transgresses on the wrong side of each 
obstruction point.  

[5] –Repeat steps 1 through 4 above with the parameter values varied one at a time so that the 
dependence of the errors on each parameter can be estimated.  

[9] – Compute improved estimates of the parameter values and then repeat steps 1 through 5 above. 
Continue until a series shape that satisfies the constraints has been found or it is determined that a 
solution is not possible with the current value of    N.  

[10] If a solution could not found with one value of    N, increase    N    and try again. Conversely, if a 
solution was found for the first choice of   N, then reduce   N   and see if a solution with a lower value 
of   N   can be found. 
 
13. Modified Gegenbauer series for maintenance of track geometry 

 
In track with traditional spirals the defective dynamics of the traditional spiral geometry causes the 
vehicles to apply systematic net lateral forces to the track structure near the ends of the spirals (see 
references 3 and 4 for examples). This causes slow but progressive lateral movement of the track. 
When track has become rough due to traffic (and other factors) its geometry is corrected as a part of 
periodic maintenance. In recent years this maintenance has been done mainly using large tamping 
machines that make corrections determined by computer programsThere are two different ways that 
alignment can be improved. One way is to bring the alignment back into conformance with 
engineering drawings that specify absolute locations through which the rails should pass. The other 
way is to make the alignment smooth relative to a running average of the current location of the track. 
Where the track is not anchored by fixed objects such as bridges it has been the general practice in 
North America to do smoothing relative to the existing alignment of the track and not to try to bring 
the track back into conformance with engineering drawings.  
 
The net result is that there are many heavily used main line railroad curves whose alignments at the 
ends of spirals deviate by distances such as 5 and 10 inches from where they are supposed to be 
according to drawings. Maintenance by smoothing keeps such curves usable. It would probably not be 
considered cost effective to bring such curve alignments back into conformance with traditional 
drawings except when they lie on lines that are being completely reconstructed. It would therefore be 
useful to have a method for determining a set of lateral shifts that produce a corrected alignment with 
optimal dynamic properties subject to the limitation that no single shift exceen a given limit, such as   
3.0   inches. If the corrected alignment produced by the shifts were specified mathematically relative to 
absolute coordinates it could serve to define an accepted shape for the track, and subsequent alignment 
maintenance could be programmed to preserve (or further improve) that shape and prevent further 
drift. Even if the documentation, engineering, and control infrastruture necessary to maintain absolute 
track alignments were not available, the method would still offer the benefit of providing optimal 
corrected alignments subject to a limit on allowed track shift. It is important to keep in mind that by 
including improved spirals, the corrected alignments would not be subject to the systematic lateral 
forces caused by the defective dynamics of traditional linear spirals and also caused to a lesser extent 
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by other traditional spirals. The tendency toward drift will therefore be much reduced even without 
absolute location control during tamping. 
 
The series shapes based on modified Gegenbauer polynomial terms as set forth herein appear to 
provide the basis for such a method. A procedure for finding a modified Gegenbauer series to define an 
accepted geometry for a track segment such as a spiral and some track past each end thereof in which 
departure from ideal geometry is substantial is as follows: 
 
[1] – Obtain measured chord offset values at stations spaced uniformly along the track segment being 
analyzed. From the offsets construct the x & y coordinates of each station point with respect to a 
Cartesian coordinate system of convenience. (If accurate track line survey data are available, then 
those data can be used as a check or, if they are very precise and accurate, as a substitute.) 
 
[2] – Once the existing station point coordinates are known, a series shape that provides an 
approximation for a segment of the existing track line in which curvature is to vary with distance can 
be obtained via the procedure of Section 12 above with a modification as follows. Enter the existing 
station points as though they were obstructions but modify the error criteria so that the shape is 
allowed to pass on either side of each existing point and take the RMS value of the distances of the 
existing points from the series shape as a measure of the cumulative error. The values of the    j[n]   
coefficients that minimize the cumulative error for a given value of   N   can be determined by iterative 
search as outlined in the preceding Section. Once an optimal set of    j[n]   coefficient values has been 
obtained the distances from eacj existing station point to the series shape can be determined. If any of 
those distances exceeds that maximum allowed throw value, then a judgment can be made as to 
whether to mark that point as an obstruction and treat it according to the procedure of Section 12 or to 
employ a larger track shift at its location. The final series shape is then used to calculate the track shifts 
that a tamping machine will be instructed to make.  
 
A compromise needs to be found between a lower value of   N   which will give better dynamics but 
require larger track throws and a higher value of    N   that will allow more shape oscillation in the final 
alignment but whose corresponding track throws will not be as large. An estimate of an upper limit for   
N   can be made as follows. The number of cycles in a Gegenbauer polynomial of order   n   is   
(n + 1)/2. Taking account of the length of the transition   2a, the maximum authorized speed   v, the 
highest frequency of excitation produced by the series shape will be   v (N - 1)/(4 a). As a rule of 
thumb this frequency should be less than about one third the lowest vehicle secondary suspension 
resonant frequency. Until experience has been gained vehicle operation over candidate shapes should 
be simulated. 
 
There is an alternate way to obtain a series shape to approximate and document an imperfectly 
corrected transition alignment. The alternate method is algorithmically more complex but may still be 
useful. The remainder of this Section outlines the alternate method. 
 
[1] – Same as [1] above. 
 
[2] – From the station point coordinates construct a table of values of curvature as a function of 
distance along the transition. Taking account of the maximum speed that will be authorized, use 
equation (1) to obtain corresponding track roll angle values at the station points along the transition.  
 



Bends, Jogs, And Wiggles for Railroad Tracks and Vehicle Guide Ways, Louis T Klauder Jr.       45 
(Preprint, June 24, 2002) 

 
[3] – Obtain a modified Gegenbauer series approximation for the track roll as a function of distance 
using the procedure described at the end of Section 9 above but adding another term analogous to 
expression (62) to represent the spiral component if the shape needs to include a spiral contribution. 
 
The curvature of the series approximation is obtained from the roll function via equation (1).  
 
[4] – Integrate equations (74) through (76) to obtain the compass bearing and coordinates of the path of 
the roll axis as a function of distance. Determine the coordinates of point on the track taking account of 
the bearing, the roll angle, and the roll axis height. 

[5] – Compare the track shape thus obtained with the original shape of step [1] above. Correct for 
possible systematic errors in the measured offsets, and for processing errors. Do so by adjusting the 
series coefficients   for    n = 1 and 2    so that the total change in roll angle and compass bearing have 
the correct values. 
 
76 – Calculate the corrective track shifts that a tamper would be directed to make based on the 
differences between the existing alignment from step [1] and the current series shape. If the computed 
track throws are larger than desired, then increase   N   and repeat. If the computed track throws are 
smaller than throws that have been found practical in the past, then reduce   N   and repeat. Based on 
manual review, look for corrections that should be allowed even though they exceed the desired track 
shift limit.  
 
14. Conclusions 
 
The Bend, Jog, and Wiggle shapes defined herein will allow the design of alignments with dynamic 
characteristics that are better than those of corresponding alignments incorporating only tangents, 
spirals, and arcs. Quantifying the character and magnitude of such improvements will be a task for 
future simulations analogous to those reported in reference 3 and for field tests.  
 
It is convenient to use Gegenbauer polynomials to represent combinations of spirals, Bends, Jogs, and 
Wiggles. Such combinations can be used in new designs to find geometry that avoids obstructions and 
can be used to document and maintain non-ideal curve geometry of existing tracks whose shapes have 
become deformed over the course of time. The roll acceleration functions presented herein for defining 
Bends, Jogs, and Wiggles are not the only possibilities. However, the functions defined herein are 
expected to be preferred over other possibilities in most cases. 
 
It is expected that Jogs will be widely applied for improvement of the geometry of turnouts and 
crossovers and that spiral plus Jog combinations will be widely applied in upgrading of spirals with 
inadequate offsets to allow for higher speeds. It is also expected that modified Gegenbauer series 
shapes as defined herein will be widely used to improve the track alignment results achieved by 
tamping machines. 
 
The shapes described herein can bring about improvements not only when applied to railroad tracks 
but also when used in design of geometry for maglev guide ways, highways, roller coasters, and bob 
sled runs. 
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