DESIGN OF CONTINUOUS WELDED RAIL ON A SUSPENSION BRIDGE

Technical Paper for AREMA

By: Ranganatha R. Rao* and Sudhir Sanghvi** – Parsons Transportation Group

* Project Manager, Parsons Transportation Group
** Project Engineer, Parsons Transportation Group
ABSTRACT

This paper describes the challenging job of designing a 1.8 miles long continuous welded rail (CWR) on an existing suspension bridge over the River Tagus in Portugal. It also gives details of one of the world's largest rail expansion joints with a capacity of 60-inch movement, combined with the ability to disperse the angular rotation caused by the stiffening truss. The 7475 feet long continuous stiffening truss deflects 17 feet at the center of the bridge. The CWR is designed for such flexible support and for the resulting change in grades. In addition, the CWR also has to negotiate, at the bridge ends, significant angular bend caused by the behavior of the truss under railway loading.

The choice of various track components such as running rail, guard/check rail, low toe load fasteners, slide plates, etc., some of which are specially designed and/or modified for this bridge are illustrated and explained.

The dead load constraints and aerodynamic requirements dictated a design of open deck track for the railway deck. The track structure was kept independent of the longitudinal forces in the stringers, but had sufficient fixity to maintain the vertical and transverse constraints of the track against buckling.

The expansion assembly consists of moving telescopic girders mounted on vertical rollers and restrained by horizontal rollers between the stationary girders. Longitudinally split track rails are mounted on these girders. The construction work was completed in 1999.

INTRODUCTION

The original suspension bridge over the Tagus River in Lisbon, Portugal was constructed in 1966. The design for the suspension bridge of this 7472 feet (2.3 km) long crossing was developed by Steinman Boynton Gronquist and London (Steinman). The main span is 3323 feet (1012.88 m), the side spans
are 1586 feet (483.42 m), and the three backstay spans are approximately 327 feet (100 m) each. The stiffening truss is 35 feet (10.65 m) deep. One of the unique features of this bridge is its 7472 feet long truss continuous over the suspended main, side and backstay spans. This was purposely designed to prevent large break in grade under train loading, which would have rendered the bridge otherwise unsuitable for future two-railway track installation. This resulted in one of the world’s largest expansion joints at each end of the structure. The bridge was built to carry four lanes of highway traffic at the upper deck level with design provisions for a second phase construction to allow future railroad track installation at the bottom chord level.

![Photo #1 - Bridge Under Reconstruction](image)

INSTALLATION OF RAILWAY DECK

In 1992, the Owners of this bridge awarded the design contract to add two railroad tracks at the lower level and to widen the upper deck to accommodate six highway lanes (see Figure 1).
The work was required to be performed with minimum interruption to the existing traffic. The original design provided for the second phase of construction to include the addition of new cable stays and installation of stringers at the lower level of the trusses for railway loading. Over the last 35 years there was a significant increase in the desired railway loading. The Portuguese National Railway (C.P. Rail) uses double decker passenger cars and freight cars known as mercadarios that produce live load much higher than that envisaged 30 years ago. Therefore, a comprehensive revised scheme of retrofitting had to be developed for railway load carrying capacity. After investigating several alternates, Steinman developed a system for adding new main suspension cables 3.7 m above the existing main cables. These new cables were to be anchored in new anchorages and supported at the existing towers on extended tower saddles.

![Figure 1 - Typical Cross Section of the Bridge](image)

New cables are designed to carry all the new dead loads and participate in carrying some of the live load. The new suspenders are in four parts, located at alternate panel points (odd numbered panels), between the existing suspenders, which are located at even numbered panel points. With all dead load in place, the final bridge profile remained unchanged and the stiffening truss and the railroad stringers
stay unstressed under the influence of dead loads. One of the advantages in the present design of using external new main cable anchorages, in lieu of a proposed self-anchored system, is significant reduction in the size of track stringers (3’-4” feet deep rolled shapes). The new track stringers are framed into new floorbeams, all at the level of the bottom chords. The bottom horizontal frame consisting of stringers and floorbeams and lateral bracing are designed for the new additional live load. Additionally, some localized strengthening of other truss members (excluding bottom chord) was necessary.

The retrofitting consisted of the following:

- construction of new saddles above the existing ones on the two towers,
- construction of additional anchorages,
- spinning supplementary cables and installation of suspenders and transverse bracing,
- installation of new railway floorbeams, stringers and bracings,
- extension of roadway deck
- reinforcement of stiffening truss at certain locations,
- installation of double track and expansion assembly complex,
- installation of electric traction wires and signal systems and evacuation walkway.

This was a unique type of design and reconstruction of an existing suspension bridge, all done under uninterrupted traffic.
SELECTION OF TRACK

The main considerations for the selection of track on a suspension bridge of this type are as follows:

- aerodynamically acceptable behavior,
- low dead load,
- independence from stresses in the truss,
- lower noise and maintenance levels,
- safety during derailment condition,
- capacity to accommodate a large expansion joint at ends.

After examining several alternatives such as steel ties, direct fixation, etc, continuous welded rails (CWR) with elastic fasteners on wooden ties at 23.6 inches (60 cm) spacing was considered as the best suited for this type of bridge. The track was designed to European Standards (U.I.C.) and for axle load of 50.4 kips (224 kn.) at 5.6 feet (1.7 m) spacing. The open deck was used in the section model for the wind tunnel testing and proved acceptable.

TRACK PROFILE AND GEOMETRY

The bridge is constructed on a 2% grade on the north approach and a 0.75 percent grade on the south approach. The truss is built to a flat vertical curve with a theoretical dead load camber of 32.5 feet (9.9 m). The track profile is designed to follow the profile of the truss bottom chord. The new stringers are framed to provide a smooth profile and to avoid heavy shimming under the ties.

Because of the live load the truss deforms to cause a global profile change and a local change of grade below the concentrated loads. The design criteria for the reinforcement of the bridge were such that deflections are limited to provide for safe operation of trains. Change of grades not more than 0.12% at
the end of the truss for angular bend of the rail and any deflection at the intermediate points producing vertical curve not sharper than 13,124 feet (4000 m) radius, were the criteria considered adequate for a train speed of 38 mph (60 kmph).

The deflection curves produced by the computer model were studied to verify that these criteria were satisfied.

FIGURE 2

Photo #2 - Deflection during passage of train
The track layout is divided into different zones on the 7472 feet length of the bridge as follows (see Figure 3):

- Standard Zone
- Anchor Zone
- End Zone
- Expansion Zone
- Creep Free Zone

The Standard Zone is also a rail slip zone, approximately 7050 feet (2.15 km) long, and consists of continuous welded rail. The track in this zone can flex to follow the different deflected shapes of the suspended truss as shown on Figure 2 (maximum deflection at center is 17.4 feet). The track is rigidly held transversely and vertically to the stringer for transfer of axle loads. The continuous rail can slip in its chairs longitudinally within the limits of the zone without picking up the axial forces of the stringer that supports it.
At the end of the Standard Zone the rail is anchored (anchor zone) to the stringer.

Anchor Zone - At either end of the bridge the CWR is terminated over a short length wherein the rail is anchored to the stringer through an anchor joint. The anchor joint is a specially designed insulated connection where in the rail is rigidly connected in the longitudinal direction but the rail is allowed the usual resilient support. This connection will provide the uniformity of the track modulus and prevent uneven wear of rail.

End Zone - This is a short stretch of track between anchor joint and start of expansion joint complex. Bonded rail at one end and insulated rail joint at the other end is provided for bypassing the track circuit over the expansion joint. This also provides the flexibility for construction and maintenance.

The continuous rail is ended (end zone) with a bonded joint. An insulated joint was also provided for a break in the track circuit, which is needed at the expansion ends.

Expansion Zone - The expansion zone accommodates the expansion complex. The expansion zone is kept free of CWR forces. Bonded rail joints are provided at each end for easy replacement of the expansion joint.

Creep Free Zone - In order to protect the expansion zone and to arrest any possible longitudinal movement, the creep free zone is provided with extensive creep anchors and an anchor joint on the approaches.

A detailed track chart was prepared for every panel of the bridge specifying the grade, elevation, rails; check rails, joints, ties, fittings, etc. An extract of the track chart at ends can be seen in Figure 4.
Figure 4 - An Extract of Track Chart at End
The typical track section is as shown in Figure 5 below. Rail fixation details are illustrated in Figure 6.

Figure 5 - Typical Cross Section of Track on Suspension Span

The track components are as follows:

Running Rail (Mark 1)

As per the CP Rail practice UIC 60 (approximate equivalent - 120 lbs. rail) rail was used. The rail has an UTS of 160 ksi (1100 N/mm²). The rail, in sections of 38 feet (11.5 meters) was continuously welded over the entire length of the 7472 feet long truss.

T-Headed Bolt (Mark 2)

The T-headed steel bolt fits into the slot in the ribbed bearing plate, keeping the tension clip in place and inducing appropriate preload in the rail.
Tension Clip (Mark 3)

The design and selection of the tension clip is a salient characteristic of this track. The rail needs to adjust to the deflection of the long stiffening truss as the truss deforms under live load. The rail does that by slipping longitudinally. Therefore, a new clip was developed, by modifying the standard SKL-12 clip, as manufactured by Vossloh of Germany. The modified clip induced a low toe load of 675 lbs. (3 kN) instead of the standard toe load of 2.9 kips (13 kN). The modified clip has the added advantage of a partial rail free type fastener, which allows the rail to slide longitudinally on its chair. As a result, the running rail stresses remain independent of the rail stringer stresses. Further, to facilitate sliding, a 3-mm stainless steel plate (Mark 7) is provided underneath the rail. The clips provide restraints in two stages (see Figure 7).

Screw Spikes (Mark 4)

The spikes are in conformance to UIC Standards, however split washers were provided to reduce the possibility of spikes getting loose under repetitive lateral loads and also reducing the probability of fibers of oak ties being damaged under such repetitive lateral loads.
Bearing Plate (Mark 5)

These cast steel ribbed bearing plates have a cant of 1 in 20 and have slots in the ribs to engage the T-headed bolts.

Plastic Pads (Mark 6)

Premolded plastic pads made by Getzner of Austria under the trade name of Sylomer 800 were adopted for placement underneath the ties. The structural design of the stringers and floorbeams are such that the connections and splices provided an uneven seating for the placement of the ties. Notches in the ties to accommodate bolt heads were ruled out as dead load limitations on the bridge governed the design depth of the ties. Instead, perforated plastic pads were used, to provide an even seating. These perforations in the pads eliminated the ridges created by the bolt heads in the areas of spliced connection. In accordance with the recommendation of the manufacturer of the pads, a preload of 6 kN was applied through the hook bolts to maintain the pads under load. The pads also reduce the noise level on the track.

Oak Ties (Mark 9)

Unconventionally, the bridge timbers were designed for 50.4 kips (224 kN) axle load based on Talbot’s theory of track behavior and design. The oak ties, impregnated with creosote, are 10 inches square (250 x 250 mm) in cross-section and 10 feet (3 m) long at 2 feet (60 cm) spacing. As stated before, to limit dead load on the bridge, the most economical depth of ties was used. Except for \(\frac{7}{16}\) inch (10 mm) dapping, no notching of any kind was permitted which would lower the effective depth of the sleeper.
Hook Bolts (Mark 8)

Unlike the common practice in Europe, hook bolts were adopted for engaging the oak ties with the stringers. The hook bolts, with a directional notch on the top were installed with double nuts. Provision of plastic pads below the ties result in deflection of ties under axle loads. In order to maintain a hold down force on the ties, spring washers were introduced below the nut with a nominal preload.

EXPANSION ASSEMBLY COMPLEX

The suspension bridge truss is comparatively a flexible structure. The railway loading consisting of heavy concentrated loads, when moving on this flexible bridge causes local and global deformation (deflection) of the truss. The railway track experiences steep grades and changes of grades at the center and specifically at the ends of truss. This has a significant effect at the end producing an angular bend in the rail.

The Behavior of the Bridge at the Ends

The Tagus River Bridge has one of the world's longest continuous stiffening girders, 7472 feet long continuous structure. The thermal expansion of the trusses is significant at the ends. In addition, the truss ends also move in and out due to deflection of the truss under the live load depending on the
location of the load. The maximum calculated movement at the ends for the design was 60 inches (1500 mm). It is interesting to observe the end of the bridge to move visually a few centimeters a second, as a heavy load moves from end to end.

If the running rail, is rigidly fixed to the end stringer and the transition girder, will result in a kink in the rail and high bending and fatigue stresses. (see Figure 8). Therefore the rail is mounted on resilient chairs capable of allowing the rail base to rise and fall to adjust for the imposed curvature (see elevation and rail profile in figure 8). Handling of the constant cyclical longitudinal movements (up to 60 inches max.) and the angular bends in running rail is a complex problem with respect to railway track, which was resolved by designing a unique expansion assembly complex.

EXPANSION ASSEMBLY

This is one of the largest and most complex expansion assemblies in the world. The expansion system is a combination of appurtenances located at either end of the bridge. This expansion assembly was especially developed to address the existing conditions such as restricted space, high expansion range and construction of the unit under traffic conditions on an existing bridge. After extensive research, including studying the existing joints in other parts of the world, this split rail type of expansion joint was developed. During the preliminary design stage other alternatives such as switch type expansion joints, moving sleeper type, etc., were investigated. These types required large space at the end of the bridges. Their large number of moving parts requires constant maintenance. Considering the limited space available at the end of this existing bridge, the telescopic girder type was selected as the most suitable (see Figure 9). This expansion joint is unique in that two functions, such as longitudinal movement and dispersion of angular bend, have been accommodated in a limited space of 28 feet (8.5 m). It is the most compact, yet one of the largest expansion joints in the world.
The expansion assembly complex consists of the following important components:

- Transition girder and telescopic girders
- Split rails for rail expansion
- Check rail and its expansion arrangements
- Angular bend dispersion components
- Telescopic girder mountings

Transition Girder

In order to cover the expansion gap of 5 feet (max.) at the ends (see Figure 8) and to flex for the angular bend, a short, 20 feet (6 m) transition girder was designed. This also acts as the inner moving telescopic girders for expansion. This girder, which is unique in this design, accomplishes two functions. This girder is supported at one end on a hinged bearing over the end floorbeam. The other end is supported on rollers, which roll on a track beam (see Figure 9).

The moving telescopic girder (transition girder) is inserted between the two stationary telescopic girders (see Figure 10) and held laterally and rigidly by two horizontal rollers (see Figures 10 and 11) with a preload force of 22.5 kips (100 kN) in order to maintain clearance of ¼ inch (6 mm) between
stationary and moving girders. These girders are designed very stiff, structurally, to limit deflections to no more than 1 mm.
Split Rails

These L-shaped rails have a top profile of UIC-60 railhead as detailed in Figure 12, Section E. The split rails are made of high-manganese steel, forged and surface-hardened in fine laminated perlite structure to a level of 167 ksi (1150 N/mm²) for a depth of 1 inch (25 mm) for wear resistance. The split rails are mounted on the stationary and moving girders back to back with a clearance of 2 mm as indicated in Section C. The tip of the rail, facing the direction of traffic is specially shaped to transfer the rolling wheel contact smoothly to the adjacent split rail. The wheel-rail interaction and the wheel load transfer over the split rail are illustrated in Figure 12. In order to control and guide the wheel to roll at the gauge face, a U69 type high performance rolled steel check rail is placed at 1¾ inches (45-mm) clearance. With the presence of this laterally stiff continuous check rail at the wide gauge zone of single split rail (see Figure 12, Section F), the wheel is ensured of safe rolling at the correct alignment. (See Figure 12, Plan View). The design assumptions, the actual dynamic effects of the wheel over the expansion joint and the adequacy of the various clearances were verified by prototype testing.

Check Rail Expansion

The check rail is kept continuous over the expansion gap. It is extended continuously from the truss over the telescopic girder and expansion joint up to the approaches to provide lateral restraint to the wheel flange. The checkrails on the stationary girders have been mounted on slide chairs designed for full lateral forces of the wheel, (see Figure 12, Section G). The check rail is provided with an expansion arrangement on the approaches.
Angular Bend Dispersion Components

In order to uniformly distribute the angular bend of maximum 0.06 radian and permit the rail to assume a curvature, concave or convex, the rail is fixed on special type of chairs. A dispersion length of 81 inches (2052 mm) was considered sufficient on the transition girder and similarly on the end stringer. Four chairs to the details shown in Figure 12, Section G, were designed and installed at each dispersion length.

These chairs consist of steel bearing plate mounted on a combination bearing pads, which were designed to produce compound deflection characteristics. Instead of the coil springs shown, the Contractor preferred to provide disk springs that produced the complimentary spring characteristics of the combination bearing pad.

The bearing plate supporting the rail base on an elastic fastener can rise and fall up to 2 mm under the wheel load as well as to the varying conditions of the rail curvature. Satisfactory functioning of these chairs was verified in dynamic testing conducted in Germany.

OTHER MOUNTINGS IN EXPANSION ASSEMBLY

The horizontal rollers are mounted on the stationary girders. They consist of 4.7 inches (120 mm) diameter steel rollers with bronze bush bearings (see Figure 11). They are designed for 45 kips (200 kN) lateral loads. A pack of disc springs apply a constant preload of 22.5 kips (100 kN) on these horizontal rollers which keep the telescopic girder laterally rigid so as to maintain the 2 mm clearance between moving split rail and stationary split rail.

The vertical steel rollers on the bronze bearings are mounted at the bottom of the telescopic girder at the far end (See Figure 11). They are designed for DL, LL and I and to roll for constant cyclical longitudinal movement of the telescopic girder. The steel assemblies in which the rollers are housed
are designed with close tolerance to resist lateral forces and uplift forces caused by the passage of wheel loads. These rollers are critical in maintaining the gauge and close clearances in the split rail.

TESTING

It was specified in the contract that a prototype expansion joint must be load tested with test train to study its behavior, prior to the installation of the joint on the bridge. Test criteria were also identified in the Contract Specifications. Test results were to be evaluated and if necessary, fabrication details were to be modified.

Prototype Testing

Prototype testing was split into two phases, namely, "Workshop Test" and "Field Test." The Workshop Test evaluated the behavior of the expansion joint under a longitudinal movement and the angular rotation, with different load positions. The test load consisted of two-axle bogie loaded with an high speed extenter (eccentric wheel) inducing eccentric loading, which simulated the dynamic effects a running train. The Field Test was aimed at testing the rail-wheel interaction on the expansion joint with the joint set in the maximum open position. The field test also shed light on the performance of the check rails, derailment effects, rail-wheel contact area condition and stresses and deflection under running wheel.

Workshop Testing

The workshop test was conducted at the Contractor’s site in Gotha, Germany. The workshop testing consisted of mounting the expansion joint consisting of telescopic girders and the split rails over a steel frame. The thermal expansion and the angular rotation were simulated by a set of horizontal and vertical hydraulic rams, which induced the reciprocating motion on the joint and the extenter attempted to simulate the wheel dynamic effects. This set up provided enough test data to study the behavior of
different moving parts. The workshop test endorsed the design parameters with some minor improvements. The following observations and/or improvements were made:

1. The rail stress due to angular bend was much less than the design load.
2. The combination pads provided under the rail chairs at the dispersion zone behaved as designed.
3. The horizontal and vertical roller functioned as designed. However, some improvements in lubrication were added.
4. The rotational bearing needed minor adjustments.
5. The rail joint at the end of dispersion zone was provided with a larger bolt hole.

Field Testing

The field test was conducted in Portugal for two weeks with a test train of three diesel-electric, six axle locomotives, (21.5 tonnes of axle load) two hopper-ballast wagons and one tank wagon with a total weight of about 525 metric tonnes. The test speed was 60 kmph and the total number of train passages was 2500 cycles.
The deflection and stress measurements were accomplished by electric sensors, observed on a display after each measured overrolling. The rail wear was measured by observing the contact area by recording the change in the width of the "polished zone" at the rail head.

The field test measurements indicated that:

- The rail stresses were well within the allowable fatigue strength of UIC 60 rail

- The maximum rail-wheel contact (shear) stresses in the outer split rail, as determined from the measured contact area was 245 N/mm², (35 ksi) 30% lower than the allowable fatigue shear strength of 315 N/mm² (45 ksi).

- The horizontal deflections of the split rails (1.0 mm average for the inner and outer split rail) was found to be not critical and the derailment quotient Q_h/Q_v was far below 0.7, established during the static calibrations in the Workshop Test.

- The contact area remained almost constant during the 2500 test runs.

![Photo # 6 (left) - Field Test Set Up](image)

Reports on test results indicated, aside from some minor modifications, the expansion joint behaved as designed.
SYNOPSIS

Double track of continuously welded rail and expansion joint units has been successfully installed and after completion of the required testing the bridge has been officially opened to traffic since July, 1999 (see Photograph below).

ACKNOWLEDGEMENT

The entire project has been developed under the direction of REFER (formally GECAF) of Portugal (Mario Fernandes, Director, Luis do Canto Moniz, Chief Engineer), and the authors are grateful for their assistance and direction in the successful completion of this project.