HAL Revenue Service Testing:
UP and NS Mega Sites

Dwight Clark, UP
Russell McDaniel, NS
Dingqing Li, TTCI
Objective:

- Determine effects of HAL traffic on track infrastructure and mechanical components
 - Complement/supplement the FAST program with a range of curvatures, train speeds, subgrade conditions, and climate conditions
- Alert FRA and the industry to potential problem areas and refine economic analysis of HAL traffic
Eastern and Western Mega Sites

- Mega site concept proposed in 2003 to consolidate a wide variety of revenue service experiments
 - Improve experiment design
 - Simplify coordination and communication with host railroads
 - Foster cost efficiency for instrumentation and measurements
- Two mega sites selected in 2004, each 10-30 miles
 - Eastern mega site (NS)
 - Western mega site (UP)
- Funded by AAR and FRA with donations and participations of many suppliers
HAL Revenue Service Testing - UP Mega Site

- Limits of test
 - South Morrill Subdivision
 - MP 30 to MP 60
 - Martin Bay, NE to Lewellen, NE
- 35-135 coal trains/day
 - Coal bound from Wyoming to southern and eastern power plants
- Annual tonnage 220 MGT
UP Mega Site - Track Characteristics

- Concrete tie track, premium rail, premium turnouts with movable point and spring frogs
- Ballast deck bridges
- Curvature 1° - 2°
- Grades < .5%
- Time Table speed 60 mph
- Loaded coal train speed 50 mph
Objective
- Define load environment and failure modes
 - Longitudinal force, rail temperature, vertical impact force, joint bar bending stress
- Measure effectiveness of two different joint supports

Status
- Instrumented four pairs of IJs in July 2004
 - Three pair 141# with 48” bars – all joints supported
 - One pair 133# with 36” bars – one joint supported and one joint suspended
Results

- Longitudinal tensile forces up to 530 kips at -10 deg. F
- IJ’s installed at a relatively high neutral temperature (> 100°)
- Isolated impact forces above 80 kips
- Magnitude of bending stresses in joint bars not a concern
- Isolated hairlines in the epoxy have been seen
- Still performing well after 300 MGT
UP Mega Site - Bonded Insulated Rail Joint Test

Site 1 - North Rails

Total Forces

Total Longitudinal Force (kips)

Rail Temperature (deg)
UP Mega Site - Bonded Insulated Rail Joint Test

Site 1, North Rails - Adjusted Force

Thermal Forces

Rail Temperature (deg)
Supported joint – mainly in compression; Suspended joint – mainly in tension; Stresses relatively low
Objective
- Measure wear and surface performance of new 141# premium rails on low-degree curve

Status
- Test rails installed in Sept. ‘05
 - MP 42.85 2,200’ 1° curve
 - MP 44.64 1,700’ 2° curve
 - MP 47.00 1,100’ 2° curve
1° Curve (2200') MP 42.85

High Rail

<table>
<thead>
<tr>
<th>720'</th>
<th>HEX</th>
<th>OCP1</th>
<th>HCHH1</th>
<th>HEX</th>
<th>HCP1</th>
<th>VAHC1</th>
<th>HEX</th>
<th>SP21</th>
<th>HCLA1</th>
<th>HEX</th>
<th>OCP2</th>
<th>HCLA2</th>
<th>HEX</th>
<th>SP22</th>
<th>HCP2</th>
<th>HEX</th>
</tr>
</thead>
</table>

Low Rail

<table>
<thead>
<tr>
<th>720'</th>
<th>HEX</th>
<th>OCP1</th>
<th>HCHH1</th>
<th>HEX</th>
<th>HCP1</th>
<th>VAHC1</th>
<th>HEX</th>
<th>SP21</th>
<th>HCLA1</th>
<th>HEX</th>
<th>OCP2</th>
<th>HCLA2</th>
<th>HEX</th>
<th>SP22</th>
<th>HCP2</th>
<th>HEX</th>
</tr>
</thead>
</table>

Curve = 2200'

2° Curve (1700') MP 44.65

High Rail

<table>
<thead>
<tr>
<th>470'</th>
<th>HEX</th>
<th>HCP1</th>
<th>OCP1</th>
<th>HEX</th>
<th>HCHH1</th>
<th>HCLA1</th>
<th>HEX</th>
<th>VAHC1</th>
<th>SP21</th>
<th>HEX</th>
<th>HCP2</th>
<th>SP22</th>
<th>HEX</th>
<th>HCHH2</th>
<th>VAHC2</th>
<th>HEX</th>
</tr>
</thead>
</table>

Low Rail

<table>
<thead>
<tr>
<th>470'</th>
<th>HEX</th>
<th>HCP1</th>
<th>OCP1</th>
<th>HEX</th>
<th>HCHH1</th>
<th>HCLA1</th>
<th>HEX</th>
<th>VAHC1</th>
<th>SP21</th>
<th>HEX</th>
<th>HCP2</th>
<th>SP22</th>
<th>HEX</th>
<th>HCHH2</th>
<th>VAHC2</th>
<th>HEX</th>
</tr>
</thead>
</table>

Curve = 1700'

2° Curve (1100') MP 47

High Rail

<table>
<thead>
<tr>
<th>170'</th>
<th>HEX</th>
<th>VAHC1</th>
<th>HCLA1</th>
<th>HEX</th>
<th>OCP1</th>
<th>HCP1</th>
<th>HEX</th>
<th>SP21</th>
<th>HCHH1</th>
<th>HEX</th>
<th>VAHC2</th>
<th>HCHH2</th>
<th>HEX</th>
<th>OCP2</th>
<th>SP22</th>
<th>HEX</th>
</tr>
</thead>
</table>

Low Rail

<table>
<thead>
<tr>
<th>170'</th>
<th>HEX</th>
<th>VAHC1</th>
<th>HCLA1</th>
<th>HEX</th>
<th>OCP1</th>
<th>HCP1</th>
<th>HEX</th>
<th>SP21</th>
<th>HCHH1</th>
<th>HEX</th>
<th>VAHC2</th>
<th>HCHH2</th>
<th>HEX</th>
<th>OCP2</th>
<th>SP22</th>
<th>HEX</th>
</tr>
</thead>
</table>

Curve = 1100'

Seven premium rails from six suppliers

Nippon HE-X is the control
Objective
- Measure longitudinal force/rail neural temperature behavior
 - At IJs
 - Rail repair (rail cutting)
 - Traffic effect after installation of new rails
 - Seasonal effect

Status
- Measuring longitudinal force at four IJ locations since July 2004
- Stress modulus installed in Sept. 2005 to measure the effects of rail repair, traffic and season variation
UP Mega Site - Concrete Ties on Concrete Bridge

◆ Objective

- Quantify the load environment of concrete tie/concrete bridge and their approach
- Solve concrete tie cracking problems on ballast deck concrete bridges
- Three phases:
 - Concrete ties, ballasted deck bridge and approach
 - Concrete ties with rubber tie pads
 - Ballast mat
UP Mega Site - Concrete Ties on Concrete Bridge

- **Status**
 - Instrumentation and test site commissioning completed Sept. 2005
UP Mega Site - Concrete Ties on Concrete Bridge

- Surface strain gauge on ties
- Vertical load circuits on rails (multiple of wheel circumference)
- AEI reader

East, direction of main traffic
Rail defect records
- Review and analyze rail defect and service failure records

Track geometry records
- Review and analyze track geometry records for geometry degradation rates

Analyze 286k vehicle/track interaction test conducted in July 2004
UP Mega Site - Summary

- Test program started in 2004
- Several tests just underway:
 - Instrumented IJs
 - Premium rails
 - Longitudinal forces
 - Concrete tie/bridge and approach
 - Past and current testing records for the mega site
- Tests planned for the near future:
 - Slot welds
 - Rail pad degradation
 - TOR friction management
Norfolk Southern
Mega Site
HAL Revenue Service Testing – NS Mega Site

Virginia Division
Christiansburg District
MP N350 – 360
Main 1

52 annual MGT
50% HAL
Coal traffic moving east
NS Mega Site – Track Characteristics

- Standard 136 lb rail
- Wood ties, cut spikes, spring anchors, 8” x 18” rolled steel plates in curves,
- Majority of track in 2-12° curves
- 0.47% to 1.15% grade
- Elevations up to 3 inches
- 25 mph track speed
- Open deck bridges
- Main 1 traffic traveling downhill from west to east, usually with dynamic and air brakes
- Average annual precipitation 41 inches
- Temperatures between -15°F and 95°F during the year
NS Mega Site – Composite Tie Test

- **Objective** - Determine performance of composite ties in medium to high-degree curves

- **Installation**
 - November 17, 2004
 - 6.8 degree curve
 - 2.5” elevation
 - 0.8% grade
 - 75 each of
 - Polywood
 - TieTek
 - New wood control
 - 8” x 18” rolled steel plates
 - No pilot holes
 - Cut spikes
NS Mega Site – Composite Tie Test

◆ Results

- Some cracking at tops and sides of ties
- Material flowed up and out of some spike holes resulting in raised plates
- As plates settled, spikes appear raised, not from spikes moving upward, but from plates moving down
- All ties were inspected April 2005 by vendors, TTCI, and NS
- 9 ties replaced in June 2005
 ♦ Predrilled with 3/8” x 3” pilot holes
 ♦ No cracks and better seating of plates
 ♦ No significant additional cracking after installation
NS Mega Site – Composite Tie Test

Gage-Spreading Strength after 30 MGT

Static Gage-Spreading Strength Measurements
June 2005 – after 30 MGT
Static load 9 kips with Light Track Loading Fixture
More cant in composite tie zones
Objective

- Measure wear rates and rolling contact fatigue in medium and high degree curves

Materials

- 8 premium rails from 4 suppliers
- 141 RE rail
- RMSM DH as control
NS Mega Site – Premium Rail Test

◆ Status

- Rails installed August 2005
- Initial profiles measured
- Initial surface hardnesses measured
NS Mega Site – Elastic Fastener Test

◆ **Objective**
 - Determine performance of new generation of elastic fasteners using cut spikes as control

◆ **Status**
 - Elastic fasteners installed at HAL satellite site east of Roanoke, June 2005
 - 200 each (100 ties) of
 - AirBoss
 - NorFast
 - With high strength screws
 - Control 90 ties of 8” x 18” plates with cut spikes
NS Mega Site – Wide Gap Welds

- **Objective**
 - Monitor performance of wide gap welds on premium rail in medium and high degree curves

- **Status**
 - 16 locations selected
 - In spirals, high and low rails of 4 test rail curves
 - 141 RMSM DH
 - Materials en route to site
 - Installation scheduled for first week of October
NS Mega Site – Bridge Approach Stability

Objective
- Investigate new remedy methods for surface and alignment problems associated with open deck bridges in curves or spirals

Status
- 2 bridges selected with local maintenance supervision
 - Skewed backwalls, alignment problems, broken spikes, frequent tamping
- AAR Track Loading Vehicle tested for track modulus and subsurface strength with cone penetrometer in May 2005
- Data being evaluated
NS Mega Site – Additional Tests

- FRA’s GRMS (T18) provides testing twice a year for mega site
 - Curving force measurements
 - Instrumentation installed
 - Data being collected and analyzed
 - Top of rail friction management
 - Wayside dispensers installed
 - Data being collected and analyzed
 - Slot welds
 - Depends on results of tests at TTCI
 - Rail failure history analysis
 - Data analysis in progress
 - Circular entry guardrail
 - Potential turnouts selected
 - Materials being assembled
 - Elastic fasteners on bridges
 - In initial planning stage
NS Mega Site – What is Next?

- Continue HAL revenue service monitoring at the mega sites
 - On-going experiments
 - Add new tests, addressing key issues of the industry
 - A research and testing program for many years to come
Acknowledgements

◆ Special thanks to:
 - FRA and AAR for funding the research
 - Host railroads:
 ◆ UP - Bill Wimmer, Bill Ge Meiner, Sam Atkinson
 ◆ NS - Gary Woods, Bob Blank
 - Rail Manufacturers
 ◆ Nippon
 ◆ RMSM
 ◆ JFE
 ◆ MITTAL
 ◆ Corus
 ◆ Voest Alpine
 - Tie Suppliers:
 ◆ CXT
 ◆ TieTek
 ◆ Polywood
 - Fastening Systems:
 ◆ NorFast
 ◆ AirBoss
 ◆ Lewis Bolt and Nut