## Table of Contents

**Introduction**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Chapter 1 - Railway Development</strong></td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Determinants of Transportation Development</td>
<td>9</td>
</tr>
<tr>
<td>1.3 Pre-Railway Transportation in North America</td>
<td>10</td>
</tr>
<tr>
<td>1.4 Physical Determinants of Land Movement</td>
<td>12</td>
</tr>
<tr>
<td>1.5 North American Railway Development and Impacts</td>
<td>15</td>
</tr>
<tr>
<td>1.6 Developments of the Twentieth Century</td>
<td>19</td>
</tr>
<tr>
<td>1.7 Development of Canadian Railways</td>
<td>21</td>
</tr>
<tr>
<td>1.8 Mexican Railway Development</td>
<td>23</td>
</tr>
<tr>
<td>1.9 Institutional Controls</td>
<td>24</td>
</tr>
<tr>
<td>1.10 History of Railway Bridge Engineering</td>
<td>25</td>
</tr>
<tr>
<td>1.11 New Technology – Bridge Developments in the Last Twenty Years</td>
<td>27</td>
</tr>
<tr>
<td>1.11.1 Existing Railway Bridges: Inspection and Assessment</td>
<td>27</td>
</tr>
<tr>
<td>1.11.2 New Railway Bridges: Materials, Design, Fabrication and Construction</td>
<td>28</td>
</tr>
<tr>
<td>1.12 Trade Journals</td>
<td>29</td>
</tr>
<tr>
<td>1.13 Other References</td>
<td>30</td>
</tr>
<tr>
<td><strong>Chapter 2 - Railway Industry Overview</strong></td>
<td>31</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>33</td>
</tr>
<tr>
<td>2.2 Railway Companies</td>
<td>33</td>
</tr>
<tr>
<td>2.2.1 Organization of a Railway Company</td>
<td>34</td>
</tr>
<tr>
<td>Transportation Department</td>
<td>35</td>
</tr>
<tr>
<td>Engineering Department</td>
<td>36</td>
</tr>
<tr>
<td>Mechanical Department</td>
<td>37</td>
</tr>
<tr>
<td>Marketing Department</td>
<td>37</td>
</tr>
<tr>
<td>2.3 Regulatory Agencies and Railway Associations</td>
<td>38</td>
</tr>
<tr>
<td>2.3.1 Regulatory Agencies</td>
<td>38</td>
</tr>
<tr>
<td>United States</td>
<td>38</td>
</tr>
<tr>
<td>Canada</td>
<td>39</td>
</tr>
<tr>
<td>2.3.2 Railroad Associations</td>
<td>39</td>
</tr>
<tr>
<td>AAR and RAC</td>
<td>39</td>
</tr>
<tr>
<td>AREMA</td>
<td>40</td>
</tr>
<tr>
<td>REMSA</td>
<td>40</td>
</tr>
<tr>
<td>RSSI</td>
<td>40</td>
</tr>
<tr>
<td>2.4 Operations of Railways</td>
<td>41</td>
</tr>
<tr>
<td>2.4.1 Safety First in Railway Operations</td>
<td>41</td>
</tr>
<tr>
<td>2.4.2 Bibles of the Railways for Safe Operations</td>
<td>42</td>
</tr>
<tr>
<td>2.4.3 Tracks and Authority of Movements</td>
<td>43</td>
</tr>
<tr>
<td>2.4.4 Speeds</td>
<td>45</td>
</tr>
<tr>
<td>2.4.5 Rail Traffic Control Systems</td>
<td>46</td>
</tr>
<tr>
<td>Radio Communication of Train Orders</td>
<td>46</td>
</tr>
<tr>
<td>Train Spacing and Block Separation</td>
<td>46</td>
</tr>
<tr>
<td>Track Circuit</td>
<td>47</td>
</tr>
<tr>
<td>Signal Block Length</td>
<td>47</td>
</tr>
<tr>
<td>Centralized Traffic Control</td>
<td>48</td>
</tr>
<tr>
<td>Additional Information</td>
<td>49</td>
</tr>
<tr>
<td><strong>2.5 Railway Cars</strong></td>
<td>49</td>
</tr>
<tr>
<td>2.5.1 Freight Cars</td>
<td>49</td>
</tr>
<tr>
<td>Boxcars</td>
<td>50</td>
</tr>
<tr>
<td>Insulated Boxcars and Mechanical Reefers</td>
<td>50</td>
</tr>
<tr>
<td>Intermodal Cars – Piggyback Trailers and Containers</td>
<td>50</td>
</tr>
<tr>
<td>Flat Cars</td>
<td>51</td>
</tr>
<tr>
<td>Auto Rack Cars</td>
<td>52</td>
</tr>
<tr>
<td>Gondola Cars</td>
<td>52</td>
</tr>
<tr>
<td>Hopper Cars</td>
<td>52</td>
</tr>
<tr>
<td>Rotary Gondola/Hopper Cars</td>
<td>52</td>
</tr>
<tr>
<td>Tank Cars</td>
<td>52</td>
</tr>
<tr>
<td>Maintenance-of-Way Cars</td>
<td>53</td>
</tr>
<tr>
<td>Schnabel Cars</td>
<td>53</td>
</tr>
<tr>
<td>2.5.2 Hazardous Commodities</td>
<td>53</td>
</tr>
<tr>
<td>2.5.3 Passenger Cars</td>
<td>53</td>
</tr>
<tr>
<td><strong>2.6 Locomotives</strong></td>
<td>54</td>
</tr>
<tr>
<td>2.6.1 Horsepower (hp) and Tractive Effort</td>
<td>55</td>
</tr>
<tr>
<td>2.6.2 Tractive Force and Adhesion</td>
<td>55</td>
</tr>
</tbody>
</table>
## TABLE OF CONTENTS

2.6.3 Drawbar Pull 56
2.6.4 Train Resistance 56
   Rolling Resistance 57
   Davis Formula 57
   Starting Resistance 57
   Grade Resistance 58
   Curve Resistance 58
2.6.5 Compensated Grade 58
2.6.6 Acceleration and Balance Speed 59
2.6.7 Tonnage Ratings of Locomotives 60
2.6.8 Ruling Grade 60
2.6.9 Momentum Grade 60
2.6.10 Power to Stop 61
2.7 Traffic Systems 62
   2.7.1 Priority of Trains 63
   2.7.2 Effects Of Sharing Tracks By Freight And Passenger Trains Vs. Track Of Single Use 64
   2.7.3 Overcoming The Delays That Occur In Freight Yards 65

### Chapter 3 - Basic Track 67

3.1 Track Components 69
   3.1.1 Rail 69
   Identification of Rail 70
   3.1.2 Ties 72
   Timber Ties 72
   Concrete Ties 75
   Steel Ties 75
   Alternative Material Ties 76
   3.1.3 Ballast Section 76
   3.1.4 Rail Joints 78
   Standard Joints 79
   Compromise Joints 79
   Insulated Joints 80
   3.1.5 Tie Plates 82
   3.1.6 Rail Anchors 83
   3.1.7 Fasteners 83
   Spikes 84
   Bolts 85
   3.1.8 Specialized components 85
   Derails 86
   Wheel Stoppers and Bumping Posts 86
   Gauge rods 87
   Sliding (Conley) Joints 87
   Mitre Rail 87
   Bridge/tunnel/overpass guard rails 88
   3.2 Turnouts 88
   3.2.1 Types of Turnouts 88
   Basic Turnout Terminology 89
   3.2.2 Switch 90
   3.2.3 Switching Mechanism 91
   3.2.4 Turnout Rails 91
   3.2.5 Frog 92
   Rail bound manganese (RBM) 92
   Spring Frog 93
   Solid Manganese Self-guarded Frog 93
   Bolted Rigid Frogs 94
   Movable Point Frogs 94
   Determining Frog Number 94
   3.2.6 Switch Ties 95
   3.2.7 Stock Rails 95
   3.2.8 Switch Points 96
   Identifying Left or Right Hand Points 97
   3.2.9 Specialty Components 97
   Switch Clips 97
   Switch Rods 97
   Types of Switch Rods 98
   Connecting Rod 98
# TABLE OF CONTENTS

3.2.10 Special Turnout Plates 99  
  Gauge Plates 99  
  Switch Plates 100  
  Rail Braces 100  
  Heel Block Assembly 101  
  Turnout Plates 101  
  Hook Twin Tie Plates 101  
  Frog Plates 102  
3.2.11 Guard Rails 102  
3.2.12 Switch Stands 103  
  Spring Switch 103  
3.3 Railway Crossings & Crossovers 104  
3.4 Highway Crossings 106  
  3.4.1 Crossing Construction And Reconstruction 108  
  3.4.2 Crossing Warning Devices 110  
3.5 Utility Crossings 111  
3.6 Track Geometry 112  
  3.6.1 Gage 114  
  3.6.2 Alignment 115  
    Full Body of the Curve 116  
    Transition Spiral of the Curve 117  
    Curve Elevation 117  
  3.6.3 Surface 118  
3.7 Safety 120  
3.8 Maintenance Activities 122  
  3.8.1 Track Disturbance 124  
  3.8.2 Track Disturbance Activities 125  
  3.8.3 Rail Lubrication 126  
  3.8.4 Rail Grinding 127  
  3.8.5 Rail Defect Testing 128  
  3.8.6 Geometry Cars 128  
  3.8.7 Gauge Restraint Measuring System (GRMS) 129  
  3.8.8 Vegetation Control 129  
  3.8.9 ROW Stabilization & Drainage 131  
  3.8.10 Welding 132  
3.9 Production Gangs 133  
  3.9.1 Production Rail Gang 134  
  3.9.2 Production Tie Gang 136  
  3.9.3 Production Undercutting 138  
  3.9.4 Production Surfacing Gangs 139  
  3.9.5 Road Crossing Renewal Gangs 142  
  3.9.6 Turnout Renewal 143  
  3.9.7 New Track Construction/Cutout 144  
  Track Construction /Cutovers 144  
References: 147  

Chapter 4 - Right-of-Way & Roadway 149  
4.1 Introduction 151  
4.2 Right-of-Way 152  
  4.2.1 Right-of-Way Width 152  
  4.2.2 Fences 153  
  4.2.3 Utilities 154  
  4.2.4 Vegetation 154  
4.3 Roadway 155  
  4.3.1 Soils 155  
    Definition 155  
    Soil Types 157  
    Major Soil Divisions 157  
    Soil Texture and Composition 160  
  4.3.2 Geotechnical Processes 161  
    The Concept of Stress and Strain 161  
    Effective Stress 162  
    The Effect of Porewater Pressure 162  
    Clays 163  
    Sand and Gravel 163  
    Silt 164  
    Soil Behavior Under Rapid Loading 164  
    Effect of Shear Strain 164  
    Settlement 165  
    Seepage 166
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>4.3.3  Track Structure</th>
<th>167</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical Background</td>
<td>167</td>
</tr>
<tr>
<td>Components and Functions</td>
<td>168</td>
</tr>
<tr>
<td>Subgrade</td>
<td>169</td>
</tr>
<tr>
<td>Sub-ballast</td>
<td>170</td>
</tr>
<tr>
<td>How Track Fails</td>
<td>170</td>
</tr>
<tr>
<td>4.3.4  Instability</td>
<td>172</td>
</tr>
<tr>
<td>Main Features of Landslides</td>
<td>172</td>
</tr>
<tr>
<td>Slides that Affect the Track</td>
<td>172</td>
</tr>
<tr>
<td>Triggering Mechanisms</td>
<td>174</td>
</tr>
<tr>
<td>Remediation</td>
<td>175</td>
</tr>
<tr>
<td>Soil Improvement</td>
<td>176</td>
</tr>
<tr>
<td>Improved Slope Geometry</td>
<td>176</td>
</tr>
<tr>
<td>Reduce Seepage Pressure</td>
<td>178</td>
</tr>
<tr>
<td>Structural Support</td>
<td>179</td>
</tr>
<tr>
<td>Inspection of Slopes</td>
<td>180</td>
</tr>
<tr>
<td>Monitoring Slope Movements</td>
<td>180</td>
</tr>
<tr>
<td>Areas With the Greatest Hazard</td>
<td>181</td>
</tr>
<tr>
<td>4.3.5  Settlement</td>
<td>182</td>
</tr>
<tr>
<td>Basic Theory</td>
<td>182</td>
</tr>
<tr>
<td>Influence of Construction Methods</td>
<td>183</td>
</tr>
<tr>
<td>Influence of Soil Type</td>
<td>183</td>
</tr>
<tr>
<td>4.3.6  Hazard Identification</td>
<td>184</td>
</tr>
<tr>
<td>Understanding the Factors</td>
<td>184</td>
</tr>
<tr>
<td>Understanding the Mechanisms</td>
<td>185</td>
</tr>
<tr>
<td>Identifying the Hazard</td>
<td>185</td>
</tr>
<tr>
<td>4.3.7  Summary</td>
<td>185</td>
</tr>
</tbody>
</table>

**Chapter 5 – Drainage**

<table>
<thead>
<tr>
<th>5.1  Hydrology</th>
<th>189</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1  Equations and Programs</td>
<td>191</td>
</tr>
<tr>
<td>5.1.2  Rainfall Intensity or Precipitation</td>
<td>194</td>
</tr>
<tr>
<td>5.1.2  Rainfall Intensity or Precipitation</td>
<td>195</td>
</tr>
<tr>
<td>5.1.3  Time of Concentration</td>
<td>197</td>
</tr>
<tr>
<td>5.1.4  Distribution</td>
<td>198</td>
</tr>
<tr>
<td>5.2  Hydraulics</td>
<td>198</td>
</tr>
<tr>
<td>5.2.1  Open Channel Hydraulics</td>
<td>198</td>
</tr>
<tr>
<td>5.2.2  Culvert Hydraulics</td>
<td>202</td>
</tr>
<tr>
<td>5.3  Recommended Procedures</td>
<td>210</td>
</tr>
<tr>
<td>5.3.1  Existing Drainage Study</td>
<td>210</td>
</tr>
<tr>
<td>5.3.2  Proposed Drainage System</td>
<td>211</td>
</tr>
<tr>
<td>5.3.3  Floodplain Encroachment Evaluation</td>
<td>212</td>
</tr>
<tr>
<td>5.3.4  Erosion Control Evaluation</td>
<td>213</td>
</tr>
</tbody>
</table>

**Chapter 6 - Railway Track Design**

<table>
<thead>
<tr>
<th>6.1  Stationing</th>
<th>216</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2  Horizontal Alignments</td>
<td>218</td>
</tr>
<tr>
<td>Staking Spirals By Deflections</td>
<td>219</td>
</tr>
<tr>
<td>Staking Spirals By Offsets</td>
<td>227</td>
</tr>
<tr>
<td>Applying The Spiral To Compound Curves (Arema 1965)</td>
<td>228</td>
</tr>
<tr>
<td>6.3  Vertical Alignments</td>
<td>229</td>
</tr>
<tr>
<td>6.4  Alignment Design</td>
<td>232</td>
</tr>
<tr>
<td>6.5  Turnouts</td>
<td>244</td>
</tr>
<tr>
<td>6.6  Design Of Yards</td>
<td>253</td>
</tr>
<tr>
<td>6.7  Clearances</td>
<td>256</td>
</tr>
</tbody>
</table>

References:

**Chapter 7 - Communications & Signal**

<table>
<thead>
<tr>
<th>7.1  Introduction to Signals</th>
<th>263</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.1  Railway Operation</td>
<td>265</td>
</tr>
<tr>
<td>7.1.2  Timetable Operation</td>
<td>265</td>
</tr>
<tr>
<td>7.1.3  Wayside Signals</td>
<td>266</td>
</tr>
<tr>
<td>7.1.4  Color Light Signal</td>
<td>268</td>
</tr>
<tr>
<td>7.1.5  Signal Terminology</td>
<td>269</td>
</tr>
<tr>
<td>7.1.6  Searchlight Signal</td>
<td>269</td>
</tr>
<tr>
<td>7.1.7  Operating Principle</td>
<td>270</td>
</tr>
<tr>
<td>7.1.8  Automatic Block Signals</td>
<td>270</td>
</tr>
<tr>
<td>7.1.9  Signal Location</td>
<td>271</td>
</tr>
<tr>
<td>7.1.10  Common Terms</td>
<td>272</td>
</tr>
<tr>
<td>7.1.11  Automatic Block Signal System</td>
<td>273</td>
</tr>
</tbody>
</table>

References:
TABLE OF CONTENTS

7.1.12 Centralized Traffic Control (CTC) 275
7.2 Energy Source 275
  7.2.1 Batteries 275
  7.2.2 Battery Charging 276
  7.2.3 Lightning Protection 278
7.3 Track Circuits 279
  7.3.1 DC Track Circuits 279
  7.3.2 Track Circuit Operation 280
  7.3.3 Train Shunting 282
  7.3.4 Coded DC Track Circuit 283
  7.3.5 Style “C” Track Circuit 286
  7.3.6 Overlay Track Circuits 287
  7.3.7 Overlay Track Circuit Operation 288
  7.3.8 Track Coupling Unit 288
  7.3.9 AC Track Circuits and Relays 289
  7.3.10 Apparatus Used with AC Track Circuits 290
7.4 Track Switches 291
  7.4.1 Hand Operated Switch with SCC 291
  7.4.2 Electric Switch Lock 293
  7.4.3 Dual Controlled Power Switch Machine 294
7.5 Highway Crossings 297
  7.5.1 Crossing Operation 298
  7.5.2 Crossing Gates 299
  7.5.3 Crossing Motion Detector/Predictor 300
7.6 Centralized Traffic Control (CTC) 302
  7.6.1 Operation 302
  7.6.2 Sequence of Operation 305
  7.6.3 Microprocessor Based Coded Track Circuits 308
  7.6.4 Theory of Coded Track Circuit Operation 309
  7.6.5 Solid State Interlocking 311
7.7 Defect Detectors 313
  7.7.1 Hot Box Detector 313
  7.7.2 Hot Wheel Detector 313
  7.7.3 Dragging Equipment Detector 313
  7.7.4 Wheel Defect Detector 314
  7.7.5 Slide Fence 315
  7.7.6 Flood Detectors 316
  7.7.7 Fire Detectors 316
  7.7.8 High/Wide Load Detectors 316

Chapter 8 - Railway Structures 318
8.1 Introduction to Railway Structures 320
8.2 Major Bridge Components 321
  8.2.1 Substructure 322
    Investigate Underlying Soil & Geologic Conditions 322
    Piling 322
    Abutments and Piers 327
  8.2.2 Superstructure 329
  8.2.3 Bridge Deck 330
    Open Bridge Decks 331
    Ballasted Decks 333
    Open Deck Vs. Ballast Deck 335
8.3 Bridge Types 337
  8.3.1 Timber Trestles 337
    Terminology 337
    Caps 339
    Stringers 339
    Timber Connectors 340
  8.3.2 Steel Bridges 340
    Girder Spans 340
    Truss Spans 342
    Steel Trestles 345
    Viaducts 345
  8.3.3 Concrete Bridges 346
    Arches 346
    Rigid-Frame Bridge 346
    Slab Bridges 347
    Concrete Trestles 347
    Concrete Girders 348
# TABLE OF CONTENTS

8.3.4 Moveable Spans 349  
Bascule Bridges 349  
Swing Span Bridges 351  
Vertical Lift Bridges 352  
8.4 Other Structures 355  
8.4.1 Drainage Structures 355  
8.4.2 Retaining Walls 356  
Gravity Retaining Walls 356  
Crib Walls 356  
Sheet Piling 358  
Mechanically Stabilized Earth 359  
Drainage of Retaining Walls 360  
8.4.3 Tunnels 361  
Tunnel Construction Methods 361  
8.4.4 Sheds 364  
8.5 Structural Design Considerations 365  
8.5.1 Introduction 365  
8.5.2 Bridge Loading,  
Dead Load 366  
Live Loads 367  
Impact 370  
Centrifugal Load 372  
Lateral Loads 374  
Longitudinal Loading 375  
Wind Loading 377  
Stream Flow, Ice and Buoyancy 378  
Seismic Loads 379  
Combined Loads 381  
8.5.3 Other Structure Design Criteria 381  
Fatigue 381  
Fracture Critical Members (FCM) 382  
Structure Serviceability 383  
Bearings and Volumetric Changes 385  
Composite Design 387  
Bridge Design Assumptions and Constructibility Issues 388  
Recommended Construction Considerations 389  
8.5.4 Retaining Wall Loads 391  
References: 392  

Chapter 9 - Railway Electrification 393  
9.1 Introduction 395  
9.2 Development of Motive Power for Railways 395  
9.2.1 Pioneers of Electric Traction Development 398  
9.3 Rail Operation Classification 401  
9.4 Mainline Railways and Independent Short Lines 403  
9.4.1 Mainline Electrification Studies 404  
9.4.2 Mainline Infrastructure Compatibility 406  
Maintenance 408  
Staff Safety 408  
9.4.3 Impacts of Mainline Railway Electrification on Communities. 409  
9.5 Urban Railways 409  
9.5.1 Impacts of an Urban Electrified Light Rail or Commuter Rail System on the Community 410  
9.6 Existing Electrification Systems 411  
9.7 New Electrification Systems 414  
9.7.1 Sources of Primary Power 415  
9.7.2 Substations 415  
9.7.3 Power Distribution Systems 417  
Feeder Cable Sub Systems 417  
Negative Feeder Cable Sub Systems 418  
Contact System Sub Systems 418  
9.7.4 Current Collectors 419  
Contact Shoe 419  
Trolley Poles 420  
Pantographs 420  
9.7.5 Characteristics Of Third Rail System 421  
Conductor Rail Supports 421  
9.7.6 Characteristics Of An Overhead Contact System 422  
Single Wire System 423  
Catenary Systems 425
### TABLE OF CONTENTS

9.7.7 OCS Style Selection 428  
- Location and Environment 429  
- Copper Cross-sectional Area 429  
- Economics 430  
- Cost Factors of OCS Styles 433  
- OCS Design Basics 433  

9.8 Electrification Interfaces with Other Rail Elements 434  
9.8.1 Right-of-Way 434  
- Track Layout/Realignment 434  
- Substations 435  
- Supporting Structures for the Contact System 435  
- Systemwide Ductbanks 435  
9.8.2 Track Structure 435  
9.8.3 Civil Structures 436  
- Tunnels To Be Electrified 436  
- Bridges Over Electrified Track 437  
- Bridges Under Electrified Track 437  
- Station Canopies 437  
- OCS Attachments 437  
9.8.4 Signals and Communications 438  
9.9 Interfaces with Project-Wide Staff 439  

Bibliography 443

---

**Chapter 10 - Passenger, Transit & High Speed Rail** 445

10.1 Introduction 447  
10.2 Passenger Rail Modes 448  
10.3 Distinctions between Railway Operations and Transit Operations 449  
10.4 Passenger Rail Service and Vehicle Characteristics by Mode 450  
10.5 Passenger Rail Infrastructure Characteristics by Mode 451  
10.6 Passenger Railway Infrastructure Characteristics 453  
10.6.1 High-Speed Rail (HSR) 453  
- Route Alignment Considerations 453  
- Regulatory Compliance 454  
10.6.2 Intercity Rail and Commuter Rail 455  
- General 455  
- Route Alignment Considerations 455  
- Track Standards 455  
- Regulatory Compliance 456  
10.7 Transit Infrastructure Characteristics 457  
10.7.1 Rapid Transit 457  
- Route Alignment Considerations 457  
- Track Standards 457  
- Regulatory Compliance 457  
10.7.2 Light Rail Transit (LRT) 459  
- Route Alignment Considerations 459  
- Track Standards 459  
- Regulatory Compliance 461  
10.7.3 Streetcar and Vintage Trolley 461  
- Route Alignment Considerations 461  
- Track Standards 461  
- Regulatory Compliance 461  
10.8 Passenger Railway Maintenance Considerations 462  
- Maintenance Philosophy 462  
- Maintenance Practices 462  
10.9 Transit Maintenance Considerations 463  
- Maintenance Philosophy 463  
- Maintenance Practices 464  
10.10 Special Topics Associated with Passenger Railway Operations 465  
10.10.1 Passenger Railway Line Capacity 465  
10.10.2 The Impact of Superelevation (Or Cant Deficiency and Why It’s Important) 467  
10.11 Conclusion 469

**Chapter 11 - Environmental Conditions & Permitting** 471

11.1 Introduction 473  
11.2 Environmental Regulations Of The United States 473  
11.2.1 Wetlands Regulations 474  
- U.S. Army Corps of Engineers Regulatory Boundaries 476  
11.2.2 Wetland Definition 477
# TABLE OF CONTENTS

11.2.3 Wetland Regulations 481
   Nationwide Permits 481
   General Permits 486
   USACE Non-Jurisdiction Over Isolated Wetlands 487
11.2.4 Best Management Practices 488
11.2.5 Endangered Species 488
11.2.6 Cultural Resources 491
11.2.7 Phase I Environmental Assessment 492
11.2.8 Hazardous Waste 494
11.2.9 Brownfields 496
11.2.10 Asbestos 496
11.2.11 Air Quality 497
11.3 Environmental Regulations Of Canada 499
   11.3.1 Canadian Wetlands Environmental Assessment Guidelines 500
11.3.2 Endangered Species 502
11.3.3 Hazardous Waste 503
11.3.4 Air Quality 504
11.4 Environmental Regulations Of Mexico 504
   11.4.1 Regulations 505
   11.4.2 Mexico Regulation for Hazardous Waste 506
11.5 Wetland Case Study 507

**Chapter 12 - European Curve and Turnout Mechanics** 511
12.1 Introduction 513
12.2 Curves 514
   12.2.1 Curve Definition 514
   12.2.2 Gage 515
   12.2.3 Elevation in Curves 517
   12.2.4 Elevation Transition 518
   12.2.5 Track Warp 523
   12.2.6 Horizontal Transition Curves 524
   12.2.7 Theory of the Transitional Curves 526
   12.3 Gradient Change 529
12.4 Turnouts and Turnout Design 531
   12.4.1 Measuring the Frog Angle 533
   12.4.2 Turnout Calculations 534
   12.4.3 Clothoidal Turnout 537
12.5 Speed Raising Improvements 540
   12.5.1 Curve Improvements 542
   12.5.2 Surfacing and Lining 543

**Chapter 13 - Case Studies** 547
13.1 Introduction 549
   #1 – Kasky, KY – Project Survey 551
   #2 – Crestline, OH – Project Survey 557
   #3 – FEC/SFRC Connection, West Palm Beach, FL For Amtrak Service – Project Survey 561
   #4 – Ft. Washington PA – Project Survey 567

**Appendix** A-1
   Applied Science For Railway Tracks A-3
   Turnouts, Connections, And Crossings B-1
   Turnouts
      Location of Turnouts B-1
      Turnouts from Straight Track B-2
      Turnouts from Curved Track B-3
   Connections
      From Straight Track B-3
      Turnout from the Inside of a Curved Main Track B-5
      Turnout from the Outside of a Curved Main - Track B-12
   Parallel Tracks - Sidings
      Parallel Tracks Both Straight Tracks B-17
      Parallel Tracks - Curved Tracks B-18
   Parallel Tracks - Crossovers
      Crossovers - Straight Tracks. B-23
      Crossovers - Curved Tracks B-24
   Ladder Tracks B-25
   Intersecting Tracks
      Intersecting Tracks - Both Tracks Straight B-27
      Intersecting Tracks - One Straight and One Curved Track B-31
      Intersecting Tracks - Both Tracks Curved B-34
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wye Tracks</td>
<td>B-35</td>
</tr>
<tr>
<td>Wye Track - Straight Main Track</td>
<td>B-36</td>
</tr>
<tr>
<td>Wye Track - Curved Main Track</td>
<td>B-37</td>
</tr>
<tr>
<td>Diamond Turnouts</td>
<td>B-38</td>
</tr>
<tr>
<td>Crossings</td>
<td>B-39</td>
</tr>
<tr>
<td>Crossing Data</td>
<td>B-40</td>
</tr>
<tr>
<td>Straight Crossings</td>
<td>B-41</td>
</tr>
<tr>
<td>Single-Curve Crossings</td>
<td>B-42</td>
</tr>
<tr>
<td>Double-Curve Crossings</td>
<td>B-43</td>
</tr>
<tr>
<td>Example Curve Problems With Solutions</td>
<td>C-1</td>
</tr>
<tr>
<td>PROBLEM 1</td>
<td>C-1</td>
</tr>
<tr>
<td>PROBLEM 2</td>
<td>C-1</td>
</tr>
<tr>
<td>PROBLEM 3</td>
<td>C-1</td>
</tr>
<tr>
<td>PROBLEM 4</td>
<td>C-2</td>
</tr>
<tr>
<td>PROBLEM 5</td>
<td>C-2</td>
</tr>
<tr>
<td>PROBLEM 6</td>
<td>C-3</td>
</tr>
<tr>
<td>PROBLEM 7</td>
<td>C-4</td>
</tr>
<tr>
<td>PROBLEM 8</td>
<td>C-8</td>
</tr>
<tr>
<td>PROBLEM 9</td>
<td>C-9</td>
</tr>
<tr>
<td>PROBLEM 10</td>
<td>C-13</td>
</tr>
<tr>
<td>PROBLEM 11</td>
<td>C-18</td>
</tr>
<tr>
<td>Spiral Problems &amp; Solutions</td>
<td>D-1</td>
</tr>
<tr>
<td>Determining Degree Of Curvature</td>
<td>E-1</td>
</tr>
<tr>
<td>Method Of Determining Degree Of Curvatuie</td>
<td>E-2</td>
</tr>
<tr>
<td>String Lining Curves</td>
<td>F-1</td>
</tr>
<tr>
<td>Stringlining Of Railroad Curves</td>
<td>G-1</td>
</tr>
<tr>
<td>Maintenance Processes</td>
<td>H-1</td>
</tr>
<tr>
<td>Ballast Unloading</td>
<td>H-3</td>
</tr>
<tr>
<td>Gauging on Wood and Concrete Ties</td>
<td>H-7</td>
</tr>
<tr>
<td>Mechanical Surfacing of Track</td>
<td>H-11</td>
</tr>
<tr>
<td>Switch Tie, Yard and Siding Ties &amp; Programmed Maintenance Tie Renewal</td>
<td>H-17</td>
</tr>
<tr>
<td>Rail Train Rail Pickup</td>
<td>H-22</td>
</tr>
<tr>
<td>CWR Rail Relay on Wood or Concrete Ties</td>
<td>H-27</td>
</tr>
<tr>
<td>Mechanized Tie Renewal</td>
<td>H-32</td>
</tr>
<tr>
<td>Track Abandonment</td>
<td>H-37</td>
</tr>
<tr>
<td>Track Sledding</td>
<td>H-44</td>
</tr>
<tr>
<td>Installation of Panelized Turnouts</td>
<td>H-50</td>
</tr>
<tr>
<td>Unloading Continuous Welded Rail (CWR)</td>
<td>H-57</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>Glossary-1</td>
</tr>
</tbody>
</table>